svn commit: r292803 - stable/9/tools/regression/lib/msun
Garrett Cooper
ngie at FreeBSD.org
Sun Dec 27 21:39:29 UTC 2015
Author: ngie
Date: Sun Dec 27 21:39:28 2015
New Revision: 292803
URL: https://svnweb.freebsd.org/changeset/base/292803
Log:
MFstable/10 r226603,r251119:
r226603 (by das):
Tests for complex trig and hyperbolic functions.
r251119 (by das):
Basic tests for complex inverse trig and hyperbolic functions.
Added:
stable/9/tools/regression/lib/msun/test-ctrig.c
- copied unchanged from r226603, head/tools/regression/lib/msun/test-ctrig.c
stable/9/tools/regression/lib/msun/test-ctrig.t
- copied unchanged from r226603, head/tools/regression/lib/msun/test-ctrig.t
stable/9/tools/regression/lib/msun/test-invctrig.c
- copied unchanged from r251119, head/tools/regression/lib/msun/test-invctrig.c
Modified:
stable/9/tools/regression/lib/msun/Makefile
Directory Properties:
stable/9/ (props changed)
stable/9/tools/ (props changed)
stable/9/tools/regression/ (props changed)
Modified: stable/9/tools/regression/lib/msun/Makefile
==============================================================================
--- stable/9/tools/regression/lib/msun/Makefile Sun Dec 27 21:34:37 2015 (r292802)
+++ stable/9/tools/regression/lib/msun/Makefile Sun Dec 27 21:39:28 2015 (r292803)
@@ -1,7 +1,9 @@
# $FreeBSD$
-TESTS= test-cexp test-conj test-csqrt test-exponential test-fenv test-fma \
- test-fmaxmin test-ilogb test-invtrig test-logarithm test-lrint \
+TESTS= test-cexp test-conj test-csqrt test-ctrig \
+ test-exponential test-fenv test-fma \
+ test-fmaxmin test-ilogb test-invtrig test-invctrig \
+ test-logarithm test-lrint \
test-lround test-nan test-nearbyint test-next test-rem test-trig
CFLAGS+= -O0 -lm
Copied: stable/9/tools/regression/lib/msun/test-ctrig.c (from r226603, head/tools/regression/lib/msun/test-ctrig.c)
==============================================================================
--- /dev/null 00:00:00 1970 (empty, because file is newly added)
+++ stable/9/tools/regression/lib/msun/test-ctrig.c Sun Dec 27 21:39:28 2015 (r292803, copy of r226603, head/tools/regression/lib/msun/test-ctrig.c)
@@ -0,0 +1,540 @@
+/*-
+ * Copyright (c) 2008-2011 David Schultz <das at FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * Tests for csin[h](), ccos[h](), and ctan[h]().
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <assert.h>
+#include <complex.h>
+#include <fenv.h>
+#include <float.h>
+#include <math.h>
+#include <stdio.h>
+
+#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
+ FE_OVERFLOW | FE_UNDERFLOW)
+#define OPT_INVALID (ALL_STD_EXCEPT & ~FE_INVALID)
+#define OPT_INEXACT (ALL_STD_EXCEPT & ~FE_INEXACT)
+#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG)
+#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG)
+#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG)
+
+#pragma STDC FENV_ACCESS ON
+#pragma STDC CX_LIMITED_RANGE OFF
+
+/*
+ * XXX gcc implements complex multiplication incorrectly. In
+ * particular, it implements it as if the CX_LIMITED_RANGE pragma
+ * were ON. Consequently, we need this function to form numbers
+ * such as x + INFINITY * I, since gcc evalutes INFINITY * I as
+ * NaN + INFINITY * I.
+ */
+static inline long double complex
+cpackl(long double x, long double y)
+{
+ long double complex z;
+
+ __real__ z = x;
+ __imag__ z = y;
+ return (z);
+}
+
+/* Flags that determine whether to check the signs of the result. */
+#define CS_REAL 1
+#define CS_IMAG 2
+#define CS_BOTH (CS_REAL | CS_IMAG)
+
+#ifdef DEBUG
+#define debug(...) printf(__VA_ARGS__)
+#else
+#define debug(...) (void)0
+#endif
+
+/*
+ * Test that a function returns the correct value and sets the
+ * exception flags correctly. The exceptmask specifies which
+ * exceptions we should check. We need to be lenient for several
+ * reasons, but mainly because on some architectures it's impossible
+ * to raise FE_OVERFLOW without raising FE_INEXACT.
+ *
+ * These are macros instead of functions so that assert provides more
+ * meaningful error messages.
+ *
+ * XXX The volatile here is to avoid gcc's bogus constant folding and work
+ * around the lack of support for the FENV_ACCESS pragma.
+ */
+#define test_p(func, z, result, exceptmask, excepts, checksign) do { \
+ volatile long double complex _d = z; \
+ debug(" testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func, \
+ creall(_d), cimagl(_d), creall(result), cimagl(result)); \
+ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
+ assert(cfpequal((func)(_d), (result), (checksign))); \
+ assert(((func), fetestexcept(exceptmask) == (excepts))); \
+} while (0)
+
+/*
+ * Test within a given tolerance. The tolerance indicates relative error
+ * in ulps. If result is 0, however, it measures absolute error in units
+ * of <format>_EPSILON.
+ */
+#define test_p_tol(func, z, result, tol) do { \
+ volatile long double complex _d = z; \
+ debug(" testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func, \
+ creall(_d), cimagl(_d), creall(result), cimagl(result)); \
+ assert(cfpequal_tol((func)(_d), (result), (tol))); \
+} while (0)
+
+/* These wrappers apply the identities f(conj(z)) = conj(f(z)). */
+#define test(func, z, result, exceptmask, excepts, checksign) do { \
+ test_p(func, z, result, exceptmask, excepts, checksign); \
+ test_p(func, conjl(z), conjl(result), exceptmask, excepts, checksign); \
+} while (0)
+#define test_tol(func, z, result, tol) do { \
+ test_p_tol(func, z, result, tol); \
+ test_p_tol(func, conjl(z), conjl(result), tol); \
+} while (0)
+
+/* Test the given function in all precisions. */
+#define testall(func, x, result, exceptmask, excepts, checksign) do { \
+ test(func, x, result, exceptmask, excepts, checksign); \
+ test(func##f, x, result, exceptmask, excepts, checksign); \
+} while (0)
+#define testall_odd(func, x, result, exceptmask, excepts, checksign) do { \
+ testall(func, x, result, exceptmask, excepts, checksign); \
+ testall(func, -x, -result, exceptmask, excepts, checksign); \
+} while (0)
+#define testall_even(func, x, result, exceptmask, excepts, checksign) do { \
+ testall(func, x, result, exceptmask, excepts, checksign); \
+ testall(func, -x, result, exceptmask, excepts, checksign); \
+} while (0)
+
+/*
+ * Test the given function in all precisions, within a given tolerance.
+ * The tolerance is specified in ulps.
+ */
+#define testall_tol(func, x, result, tol) do { \
+ test_tol(func, x, result, tol * DBL_ULP()); \
+ test_tol(func##f, x, result, tol * FLT_ULP()); \
+} while (0)
+#define testall_odd_tol(func, x, result, tol) do { \
+ test_tol(func, x, result, tol * DBL_ULP()); \
+ test_tol(func, -x, -result, tol * DBL_ULP()); \
+} while (0)
+#define testall_even_tol(func, x, result, tol) do { \
+ test_tol(func, x, result, tol * DBL_ULP()); \
+ test_tol(func, -x, result, tol * DBL_ULP()); \
+} while (0)
+
+/*
+ * Determine whether x and y are equal, with two special rules:
+ * +0.0 != -0.0
+ * NaN == NaN
+ * If checksign is 0, we compare the absolute values instead.
+ */
+static int
+fpequal(long double x, long double y, int checksign)
+{
+ if (isnan(x) && isnan(y))
+ return (1);
+ if (checksign)
+ return (x == y && !signbit(x) == !signbit(y));
+ else
+ return (fabsl(x) == fabsl(y));
+}
+
+static int
+fpequal_tol(long double x, long double y, long double tol)
+{
+ fenv_t env;
+ int ret;
+
+ if (isnan(x) && isnan(y))
+ return (1);
+ if (!signbit(x) != !signbit(y) && tol == 0)
+ return (0);
+ if (x == y)
+ return (1);
+ if (tol == 0)
+ return (0);
+
+ /* Hard case: need to check the tolerance. */
+ feholdexcept(&env);
+ /*
+ * For our purposes here, if y=0, we interpret tol as an absolute
+ * tolerance. This is to account for roundoff in the input, e.g.,
+ * cos(Pi/2) ~= 0.
+ */
+ if (y == 0.0)
+ ret = fabsl(x - y) <= fabsl(tol);
+ else
+ ret = fabsl(x - y) <= fabsl(y * tol);
+ fesetenv(&env);
+ return (ret);
+}
+
+static int
+cfpequal(long double complex x, long double complex y, int checksign)
+{
+ return (fpequal(creal(x), creal(y), checksign & CS_REAL)
+ && fpequal(cimag(x), cimag(y), checksign & CS_IMAG));
+}
+
+static int
+cfpequal_tol(long double complex x, long double complex y, long double tol)
+{
+ return (fpequal_tol(creal(x), creal(y), tol)
+ && fpequal_tol(cimag(x), cimag(y), tol));
+}
+
+
+/* Tests for 0 */
+void
+test_zero(void)
+{
+ long double complex zero = cpackl(0.0, 0.0);
+
+ /* csinh(0) = ctanh(0) = 0; ccosh(0) = 1 (no exceptions raised) */
+ testall_odd(csinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_odd(csin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_even(ccosh, zero, 1.0, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_even(ccos, zero, cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_odd(ctanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_odd(ctan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+}
+
+/*
+ * Tests for NaN inputs.
+ */
+void
+test_nan()
+{
+ long double complex nan_nan = cpackl(NAN, NAN);
+ long double complex z;
+
+ /*
+ * IN CSINH CCOSH CTANH
+ * NaN,NaN NaN,NaN NaN,NaN NaN,NaN
+ * finite,NaN NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
+ * NaN,finite NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
+ * NaN,Inf NaN,NaN [inval] NaN,NaN [inval] NaN,NaN [inval]
+ * Inf,NaN +-Inf,NaN Inf,NaN 1,+-0
+ * 0,NaN +-0,NaN NaN,+-0 NaN,NaN [inval]
+ * NaN,0 NaN,0 NaN,+-0 NaN,0
+ */
+ z = nan_nan;
+ testall_odd(csinh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccosh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctanh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall_odd(csin, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccos, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctan, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+
+ z = cpackl(42, NAN);
+ testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_odd(ctanh, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
+ testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
+
+ z = cpackl(NAN, 42);
+ testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_odd(ctan, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
+
+ z = cpackl(NAN, INFINITY);
+ testall_odd(csinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccosh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(csin, z, cpackl(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccos, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
+ CS_IMAG);
+ testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_IMAG);
+
+ z = cpackl(INFINITY, NAN);
+ testall_odd(csinh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccosh, z, cpackl(INFINITY, NAN), ALL_STD_EXCEPT, 0,
+ CS_REAL);
+ testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall_odd(csin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_even(ccos, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
+
+ z = cpackl(0, NAN);
+ testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctanh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(csin, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctan, z, cpackl(0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+
+ z = cpackl(NAN, 0);
+ testall_odd(csinh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
+ testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctanh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
+ testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
+ testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(ctan, z, nan_nan, OPT_INVALID, 0, 0);
+}
+
+void
+test_inf(void)
+{
+ static const long double finites[] = {
+ 0, M_PI / 4, 3 * M_PI / 4, 5 * M_PI / 4,
+ };
+ long double complex z, c, s;
+ int i;
+
+ /*
+ * IN CSINH CCOSH CTANH
+ * Inf,Inf +-Inf,NaN inval +-Inf,NaN inval 1,+-0
+ * Inf,finite Inf cis(finite) Inf cis(finite) 1,0 sin(2 finite)
+ * 0,Inf +-0,NaN inval NaN,+-0 inval NaN,NaN inval
+ * finite,Inf NaN,NaN inval NaN,NaN inval NaN,NaN inval
+ */
+ z = cpackl(INFINITY, INFINITY);
+ testall_odd(csinh, z, cpackl(INFINITY, NAN),
+ ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccosh, z, cpackl(INFINITY, NAN),
+ ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_odd(ctanh, z, cpackl(1, 0), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall_odd(csin, z, cpackl(NAN, INFINITY),
+ ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccos, z, cpackl(INFINITY, NAN),
+ ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_odd(ctan, z, cpackl(0, 1), ALL_STD_EXCEPT, 0, CS_REAL);
+
+ /* XXX We allow spurious inexact exceptions here (hard to avoid). */
+ for (i = 0; i < sizeof(finites) / sizeof(finites[0]); i++) {
+ z = cpackl(INFINITY, finites[i]);
+ c = INFINITY * cosl(finites[i]);
+ s = finites[i] == 0 ? finites[i] : INFINITY * sinl(finites[i]);
+ testall_odd(csinh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
+ testall_even(ccosh, z, cpackl(c, s), OPT_INEXACT, 0, CS_BOTH);
+ testall_odd(ctanh, z, cpackl(1, 0 * sin(finites[i] * 2)),
+ OPT_INEXACT, 0, CS_BOTH);
+ z = cpackl(finites[i], INFINITY);
+ testall_odd(csin, z, cpackl(s, c), OPT_INEXACT, 0, CS_BOTH);
+ testall_even(ccos, z, cpackl(c, -s), OPT_INEXACT, 0, CS_BOTH);
+ testall_odd(ctan, z, cpackl(0 * sin(finites[i] * 2), 1),
+ OPT_INEXACT, 0, CS_BOTH);
+ }
+
+ z = cpackl(0, INFINITY);
+ testall_odd(csinh, z, cpackl(0, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccosh, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_odd(ctanh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ z = cpackl(INFINITY, 0);
+ testall_odd(csin, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccos, z, cpackl(NAN, 0), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_odd(ctan, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+
+ z = cpackl(42, INFINITY);
+ testall_odd(csinh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccosh, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_odd(ctanh, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
+ z = cpackl(INFINITY, 42);
+ testall_odd(csin, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ testall_even(ccos, z, cpackl(NAN, NAN), ALL_STD_EXCEPT, FE_INVALID, 0);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_odd(ctan, z, cpackl(NAN, NAN), OPT_INEXACT, FE_INVALID, 0);
+}
+
+/* Tests along the real and imaginary axes. */
+void
+test_axes(void)
+{
+ static const long double nums[] = {
+ M_PI / 4, M_PI / 2, 3 * M_PI / 4,
+ 5 * M_PI / 4, 3 * M_PI / 2, 7 * M_PI / 4,
+ };
+ long double complex z;
+ int i;
+
+ for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) {
+ /* Real axis */
+ z = cpackl(nums[i], 0.0);
+ testall_odd_tol(csinh, z, cpackl(sinh(nums[i]), 0), 0);
+ testall_even_tol(ccosh, z, cpackl(cosh(nums[i]), 0), 0);
+ testall_odd_tol(ctanh, z, cpackl(tanh(nums[i]), 0), 1);
+ testall_odd_tol(csin, z, cpackl(sin(nums[i]),
+ copysign(0, cos(nums[i]))), 0);
+ testall_even_tol(ccos, z, cpackl(cos(nums[i]),
+ -copysign(0, sin(nums[i]))), 0);
+ testall_odd_tol(ctan, z, cpackl(tan(nums[i]), 0), 1);
+
+ /* Imaginary axis */
+ z = cpackl(0.0, nums[i]);
+ testall_odd_tol(csinh, z, cpackl(copysign(0, cos(nums[i])),
+ sin(nums[i])), 0);
+ testall_even_tol(ccosh, z, cpackl(cos(nums[i]),
+ copysign(0, sin(nums[i]))), 0);
+ testall_odd_tol(ctanh, z, cpackl(0, tan(nums[i])), 1);
+ testall_odd_tol(csin, z, cpackl(0, sinh(nums[i])), 0);
+ testall_even_tol(ccos, z, cpackl(cosh(nums[i]), -0.0), 0);
+ testall_odd_tol(ctan, z, cpackl(0, tanh(nums[i])), 1);
+ }
+}
+
+void
+test_small(void)
+{
+ /*
+ * z = 0.5 + i Pi/4
+ * sinh(z) = (sinh(0.5) + i cosh(0.5)) * sqrt(2)/2
+ * cosh(z) = (cosh(0.5) + i sinh(0.5)) * sqrt(2)/2
+ * tanh(z) = (2cosh(0.5)sinh(0.5) + i) / (2 cosh(0.5)**2 - 1)
+ * z = -0.5 + i Pi/2
+ * sinh(z) = cosh(0.5)
+ * cosh(z) = -i sinh(0.5)
+ * tanh(z) = -coth(0.5)
+ * z = 1.0 + i 3Pi/4
+ * sinh(z) = (-sinh(1) + i cosh(1)) * sqrt(2)/2
+ * cosh(z) = (-cosh(1) + i sinh(1)) * sqrt(2)/2
+ * tanh(z) = (2cosh(1)sinh(1) - i) / (2cosh(1)**2 - 1)
+ */
+ static const struct {
+ long double a, b;
+ long double sinh_a, sinh_b;
+ long double cosh_a, cosh_b;
+ long double tanh_a, tanh_b;
+ } tests[] = {
+ { 0.5L,
+ 0.78539816339744830961566084581987572L,
+ 0.36847002415910435172083660522240710L,
+ 0.79735196663945774996093142586179334L,
+ 0.79735196663945774996093142586179334L,
+ 0.36847002415910435172083660522240710L,
+ 0.76159415595576488811945828260479359L,
+ 0.64805427366388539957497735322615032L },
+ { -0.5L,
+ 1.57079632679489661923132169163975144L,
+ 0.0L,
+ 1.12762596520638078522622516140267201L,
+ 0.0L,
+ -0.52109530549374736162242562641149156L,
+ -2.16395341373865284877000401021802312L,
+ 0.0L },
+ { 1.0L,
+ 2.35619449019234492884698253745962716L,
+ -0.83099273328405698212637979852748608L,
+ 1.09112278079550143030545602018565236L,
+ -1.09112278079550143030545602018565236L,
+ 0.83099273328405698212637979852748609L,
+ 0.96402758007581688394641372410092315L,
+ -0.26580222883407969212086273981988897L }
+ };
+ long double complex z;
+ int i;
+
+ for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
+ z = cpackl(tests[i].a, tests[i].b);
+ testall_odd_tol(csinh, z,
+ cpackl(tests[i].sinh_a, tests[i].sinh_b), 1.1);
+ testall_even_tol(ccosh, z,
+ cpackl(tests[i].cosh_a, tests[i].cosh_b), 1.1);
+ testall_odd_tol(ctanh, z,
+ cpackl(tests[i].tanh_a, tests[i].tanh_b), 1.1);
+ }
+}
+
+/* Test inputs that might cause overflow in a sloppy implementation. */
+void
+test_large(void)
+{
+ long double complex z;
+
+ /* tanh() uses a threshold around x=22, so check both sides. */
+ z = cpackl(21, 0.78539816339744830961566084581987572L);
+ testall_odd_tol(ctanh, z,
+ cpackl(1.0, 1.14990445285871196133287617611468468e-18L), 1);
+ z++;
+ testall_odd_tol(ctanh, z,
+ cpackl(1.0, 1.55622644822675930314266334585597964e-19L), 1);
+
+ z = cpackl(355, 0.78539816339744830961566084581987572L);
+ testall_odd_tol(ctanh, z,
+ cpackl(1.0, 8.95257245135025991216632140458264468e-309L), 1);
+ z = cpackl(30, 0x1p1023L);
+ testall_odd_tol(ctanh, z,
+ cpackl(1.0, -1.62994325413993477997492170229268382e-26L), 1);
+ z = cpackl(1, 0x1p1023L);
+ testall_odd_tol(ctanh, z,
+ cpackl(0.878606311888306869546254022621986509L,
+ -0.225462792499754505792678258169527424L), 1);
+
+ z = cpackl(710.6, 0.78539816339744830961566084581987572L);
+ testall_odd_tol(csinh, z,
+ cpackl(1.43917579766621073533185387499658944e308L,
+ 1.43917579766621073533185387499658944e308L), 1);
+ testall_even_tol(ccosh, z,
+ cpackl(1.43917579766621073533185387499658944e308L,
+ 1.43917579766621073533185387499658944e308L), 1);
+
+ z = cpackl(1500, 0.78539816339744830961566084581987572L);
+ testall_odd(csinh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
+ FE_OVERFLOW, CS_BOTH);
+ testall_even(ccosh, z, cpackl(INFINITY, INFINITY), OPT_INEXACT,
+ FE_OVERFLOW, CS_BOTH);
+}
+
+int
+main(int argc, char *argv[])
+{
+
+ printf("1..6\n");
+
+ test_zero();
+ printf("ok 1 - ctrig zero\n");
+
+ test_nan();
+ printf("ok 2 - ctrig nan\n");
+
+ test_inf();
+ printf("ok 3 - ctrig inf\n");
+
+ test_axes();
+ printf("ok 4 - ctrig axes\n");
+
+ test_small();
+ printf("ok 5 - ctrig small\n");
+
+ test_large();
+ printf("ok 6 - ctrig large\n");
+
+ return (0);
+}
Copied: stable/9/tools/regression/lib/msun/test-ctrig.t (from r226603, head/tools/regression/lib/msun/test-ctrig.t)
==============================================================================
--- /dev/null 00:00:00 1970 (empty, because file is newly added)
+++ stable/9/tools/regression/lib/msun/test-ctrig.t Sun Dec 27 21:39:28 2015 (r292803, copy of r226603, head/tools/regression/lib/msun/test-ctrig.t)
@@ -0,0 +1,10 @@
+#!/bin/sh
+# $FreeBSD$
+
+cd `dirname $0`
+
+executable=`basename $0 .t`
+
+make $executable 2>&1 > /dev/null
+
+exec ./$executable
Copied: stable/9/tools/regression/lib/msun/test-invctrig.c (from r251119, head/tools/regression/lib/msun/test-invctrig.c)
==============================================================================
--- /dev/null 00:00:00 1970 (empty, because file is newly added)
+++ stable/9/tools/regression/lib/msun/test-invctrig.c Sun Dec 27 21:39:28 2015 (r292803, copy of r251119, head/tools/regression/lib/msun/test-invctrig.c)
@@ -0,0 +1,442 @@
+/*-
+ * Copyright (c) 2008-2013 David Schultz <das at FreeBSD.org>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * Tests for casin[h](), cacos[h](), and catan[h]().
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <assert.h>
+#include <complex.h>
+#include <fenv.h>
+#include <float.h>
+#include <math.h>
+#include <stdio.h>
+
+#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
+ FE_OVERFLOW | FE_UNDERFLOW)
+#define OPT_INVALID (ALL_STD_EXCEPT & ~FE_INVALID)
+#define OPT_INEXACT (ALL_STD_EXCEPT & ~FE_INEXACT)
+#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG)
+#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG)
+#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG)
+
+#pragma STDC FENV_ACCESS ON
+#pragma STDC CX_LIMITED_RANGE OFF
+
+/* Flags that determine whether to check the signs of the result. */
+#define CS_REAL 1
+#define CS_IMAG 2
+#define CS_BOTH (CS_REAL | CS_IMAG)
+
+#ifdef DEBUG
+#define debug(...) printf(__VA_ARGS__)
+#else
+#define debug(...) (void)0
+#endif
+
+/*
+ * Test that a function returns the correct value and sets the
+ * exception flags correctly. The exceptmask specifies which
+ * exceptions we should check. We need to be lenient for several
+ * reasons, but mainly because on some architectures it's impossible
+ * to raise FE_OVERFLOW without raising FE_INEXACT.
+ *
+ * These are macros instead of functions so that assert provides more
+ * meaningful error messages.
+ *
+ * XXX The volatile here is to avoid gcc's bogus constant folding and work
+ * around the lack of support for the FENV_ACCESS pragma.
+ */
+#define test_p(func, z, result, exceptmask, excepts, checksign) do { \
+ volatile long double complex _d = z; \
+ debug(" testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func, \
+ creall(_d), cimagl(_d), creall(result), cimagl(result)); \
+ assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
+ assert(cfpequal((func)(_d), (result), (checksign))); \
+ assert(((func), fetestexcept(exceptmask) == (excepts))); \
+} while (0)
+
+/*
+ * Test within a given tolerance. The tolerance indicates relative error
+ * in ulps.
+ */
+#define test_p_tol(func, z, result, tol) do { \
+ volatile long double complex _d = z; \
+ debug(" testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func, \
+ creall(_d), cimagl(_d), creall(result), cimagl(result)); \
+ assert(cfpequal_tol((func)(_d), (result), (tol))); \
+} while (0)
+
+/* These wrappers apply the identities f(conj(z)) = conj(f(z)). */
+#define test(func, z, result, exceptmask, excepts, checksign) do { \
+ test_p(func, z, result, exceptmask, excepts, checksign); \
+ test_p(func, conjl(z), conjl(result), exceptmask, excepts, checksign); \
+} while (0)
+#define test_tol(func, z, result, tol) do { \
+ test_p_tol(func, z, result, tol); \
+ test_p_tol(func, conjl(z), conjl(result), tol); \
+} while (0)
+
+/* Test the given function in all precisions. */
+#define testall(func, x, result, exceptmask, excepts, checksign) do { \
+ test(func, x, result, exceptmask, excepts, checksign); \
+ test(func##f, x, result, exceptmask, excepts, checksign); \
+} while (0)
+#define testall_odd(func, x, result, exceptmask, excepts, checksign) do { \
+ testall(func, x, result, exceptmask, excepts, checksign); \
+ testall(func, -(x), -result, exceptmask, excepts, checksign); \
+} while (0)
+#define testall_even(func, x, result, exceptmask, excepts, checksign) do { \
+ testall(func, x, result, exceptmask, excepts, checksign); \
+ testall(func, -(x), result, exceptmask, excepts, checksign); \
+} while (0)
+
+/*
+ * Test the given function in all precisions, within a given tolerance.
+ * The tolerance is specified in ulps.
+ */
+#define testall_tol(func, x, result, tol) do { \
+ test_tol(func, x, result, (tol) * DBL_ULP()); \
+ test_tol(func##f, x, result, (tol) * FLT_ULP()); \
+} while (0)
+#define testall_odd_tol(func, x, result, tol) do { \
+ testall_tol(func, x, result, tol); \
+ testall_tol(func, -(x), -result, tol); \
+} while (0)
+#define testall_even_tol(func, x, result, tol) do { \
+ testall_tol(func, x, result, tol); \
+ testall_tol(func, -(x), result, tol); \
+} while (0)
+
+static const long double
+pi = 3.14159265358979323846264338327950280L,
+c3pi = 9.42477796076937971538793014983850839L;
+
+/*
+ * Determine whether x and y are equal, with two special rules:
+ * +0.0 != -0.0
+ * NaN == NaN
+ * If checksign is 0, we compare the absolute values instead.
+ */
+static int
+fpequal(long double x, long double y, int checksign)
+{
+ if (isnan(x) && isnan(y))
+ return (1);
+ if (checksign)
+ return (x == y && !signbit(x) == !signbit(y));
+ else
+ return (fabsl(x) == fabsl(y));
+}
+
+static int
+fpequal_tol(long double x, long double y, long double tol)
+{
+ fenv_t env;
+ int ret;
+
+ if (isnan(x) && isnan(y))
+ return (1);
+ if (!signbit(x) != !signbit(y))
+ return (0);
+ if (x == y)
+ return (1);
+ if (tol == 0 || y == 0.0)
+ return (0);
+
+ /* Hard case: need to check the tolerance. */
+ feholdexcept(&env);
+ ret = fabsl(x - y) <= fabsl(y * tol);
+ fesetenv(&env);
+ return (ret);
+}
+
+static int
+cfpequal(long double complex x, long double complex y, int checksign)
+{
+ return (fpequal(creal(x), creal(y), checksign & CS_REAL)
+ && fpequal(cimag(x), cimag(y), checksign & CS_IMAG));
+}
+
+static int
+cfpequal_tol(long double complex x, long double complex y, long double tol)
+{
+ return (fpequal_tol(creal(x), creal(y), tol)
+ && fpequal_tol(cimag(x), cimag(y), tol));
+}
+
+
+/* Tests for 0 */
+void
+test_zero(void)
+{
+ long double complex zero = CMPLXL(0.0, 0.0);
+
+ testall_tol(cacosh, zero, CMPLXL(0.0, pi / 2), 1);
+ testall_tol(cacosh, -zero, CMPLXL(0.0, -pi / 2), 1);
+ testall_tol(cacos, zero, CMPLXL(pi / 2, -0.0), 1);
+ testall_tol(cacos, -zero, CMPLXL(pi / 2, 0.0), 1);
+
+ testall_odd(casinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_odd(casin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+
+ testall_odd(catanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+ testall_odd(catan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
+}
+
+/*
+ * Tests for NaN inputs.
+ */
+void
+test_nan()
+{
+ long double complex nan_nan = CMPLXL(NAN, NAN);
+ long double complex z;
+
+ /*
+ * IN CACOSH CACOS CASINH CATANH
+ * NaN,NaN NaN,NaN NaN,NaN NaN,NaN NaN,NaN
+ * finite,NaN NaN,NaN* NaN,NaN* NaN,NaN* NaN,NaN*
+ * NaN,finite NaN,NaN* NaN,NaN* NaN,NaN* NaN,NaN*
+ * NaN,Inf Inf,NaN NaN,-Inf ?Inf,NaN ?0,pi/2
+ * +-Inf,NaN Inf,NaN NaN,?Inf +-Inf,NaN +-0,NaN
+ * +-0,NaN NaN,NaN* pi/2,NaN NaN,NaN* +-0,NaN
+ * NaN,0 NaN,NaN* NaN,NaN* NaN,0 NaN,NaN*
+ *
+ * * = raise invalid
+ */
+ z = nan_nan;
+ testall(cacosh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall(cacos, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall(casinh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall(casin, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall(catanh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+ testall(catan, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
+
+ z = CMPLXL(0.5, NAN);
+ testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(casinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(catanh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(catan, z, nan_nan, OPT_INVALID, 0, 0);
+
+ z = CMPLXL(NAN, 0.5);
+ testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(casinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(catanh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(catan, z, nan_nan, OPT_INVALID, 0, 0);
+
+ z = CMPLXL(NAN, INFINITY);
+ testall(cacosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall(cacosh, -z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall(cacos, z, CMPLXL(NAN, -INFINITY), ALL_STD_EXCEPT, 0, CS_IMAG);
+ testall(casinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0);
+ testall(casin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, CS_IMAG);
+ testall_tol(catanh, z, CMPLXL(0.0, pi / 2), 1);
+ testall(catan, z, CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, CS_IMAG);
+
+ z = CMPLXL(INFINITY, NAN);
+ testall_even(cacosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0,
+ CS_REAL);
+ testall_even(cacos, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(casinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0,
+ CS_REAL);
+ testall_odd(casin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
+ testall_odd(catanh, z, CMPLXL(0.0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall_odd_tol(catan, z, CMPLXL(pi / 2, 0.0), 1);
+
+ z = CMPLXL(0.0, NAN);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_even(cacosh, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
+ testall_even_tol(cacos, z, CMPLXL(pi / 2, NAN), 1);
+ testall_odd(casinh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall_odd(casin, z, CMPLXL(0.0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
+ testall_odd(catanh, z, CMPLXL(0.0, NAN), OPT_INVALID, 0, CS_REAL);
+ testall_odd(catan, z, nan_nan, OPT_INVALID, 0, 0);
+
+ z = CMPLXL(NAN, 0.0);
+ testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(casinh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
+ testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
+ testall(catanh, z, nan_nan, OPT_INVALID, 0, CS_IMAG);
+ testall(catan, z, CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 0);
+}
+
+void
+test_inf(void)
+{
+ long double complex z;
+
+ /*
+ * IN CACOSH CACOS CASINH CATANH
+ * Inf,Inf Inf,pi/4 pi/4,-Inf Inf,pi/4 0,pi/2
+ * -Inf,Inf Inf,3pi/4 3pi/4,-Inf --- ---
+ * Inf,finite Inf,0 0,-Inf Inf,0 0,pi/2
+ * -Inf,finite Inf,pi pi,-Inf --- ---
+ * finite,Inf Inf,pi/2 pi/2,-Inf Inf,pi/2 0,pi/2
+ */
+ z = CMPLXL(INFINITY, INFINITY);
+ testall_tol(cacosh, z, CMPLXL(INFINITY, pi / 4), 1);
+ testall_tol(cacosh, -z, CMPLXL(INFINITY, -c3pi / 4), 1);
+ testall_tol(cacos, z, CMPLXL(pi / 4, -INFINITY), 1);
+ testall_tol(cacos, -z, CMPLXL(c3pi / 4, INFINITY), 1);
+ testall_odd_tol(casinh, z, CMPLXL(INFINITY, pi / 4), 1);
+ testall_odd_tol(casin, z, CMPLXL(pi / 4, INFINITY), 1);
+ testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
+ testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
+
+ z = CMPLXL(INFINITY, 0.5);
+ /* XXX We allow a spurious inexact exception here. */
+ testall(cacosh, z, CMPLXL(INFINITY, 0), OPT_INEXACT, 0, CS_BOTH);
+ testall_tol(cacosh, -z, CMPLXL(INFINITY, -pi), 1);
+ testall(cacos, z, CMPLXL(0, -INFINITY), OPT_INEXACT, 0, CS_BOTH);
+ testall_tol(cacos, -z, CMPLXL(pi, INFINITY), 1);
+ testall_odd(casinh, z, CMPLXL(INFINITY, 0), OPT_INEXACT, 0, CS_BOTH);
+ testall_odd_tol(casin, z, CMPLXL(pi / 2, INFINITY), 1);
+ testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
+ testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
+
+ z = CMPLXL(0.5, INFINITY);
+ testall_tol(cacosh, z, CMPLXL(INFINITY, pi / 2), 1);
+ testall_tol(cacosh, -z, CMPLXL(INFINITY, -pi / 2), 1);
+ testall_tol(cacos, z, CMPLXL(pi / 2, -INFINITY), 1);
+ testall_tol(cacos, -z, CMPLXL(pi / 2, INFINITY), 1);
+ testall_odd_tol(casinh, z, CMPLXL(INFINITY, pi / 2), 1);
+ /* XXX We allow a spurious inexact exception here. */
+ testall_odd(casin, z, CMPLXL(0.0, INFINITY), OPT_INEXACT, 0, CS_BOTH);
+ testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
+ testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
+}
+
+/* Tests along the real and imaginary axes. */
+void
+test_axes(void)
+{
+ static const long double nums[] = {
+ -2, -1, -0.5, 0.5, 1, 2
+ };
+ long double complex z;
+ int i;
+
+ for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) {
+ /* Real axis */
+ z = CMPLXL(nums[i], 0.0);
+ if (fabs(nums[i]) <= 1) {
+ testall_tol(cacosh, z, CMPLXL(0.0, acos(nums[i])), 1);
+ testall_tol(cacos, z, CMPLXL(acosl(nums[i]), -0.0), 1);
+ testall_tol(casin, z, CMPLXL(asinl(nums[i]), 0.0), 1);
+ testall_tol(catanh, z, CMPLXL(atanh(nums[i]), 0.0), 1);
+ } else {
+ testall_tol(cacosh, z,
+ CMPLXL(acosh(fabs(nums[i])),
+ (nums[i] < 0) ? pi : 0), 1);
+ testall_tol(cacos, z,
+ CMPLXL((nums[i] < 0) ? pi : 0,
+ -acosh(fabs(nums[i]))), 1);
+ testall_tol(casin, z,
+ CMPLXL(copysign(pi / 2, nums[i]),
+ acosh(fabs(nums[i]))), 1);
+ testall_tol(catanh, z,
+ CMPLXL(atanh(1 / nums[i]), pi / 2), 1);
+ }
+ testall_tol(casinh, z, CMPLXL(asinh(nums[i]), 0.0), 1);
+ testall_tol(catan, z, CMPLXL(atan(nums[i]), 0), 1);
+
+ /* TODO: Test the imaginary axis. */
+ }
+}
+
+void
+test_small(void)
+{
+ /*
+ * z = 0.75 + i 0.25
+ * acos(z) = Pi/4 - i ln(2)/2
+ * asin(z) = Pi/4 + i ln(2)/2
+ * atan(z) = atan(4)/2 + i ln(17/9)/4
+ */
+ static const struct {
+ complex long double z;
+ complex long double acos_z;
+ complex long double asin_z;
+ complex long double atan_z;
+ } tests[] = {
+ { CMPLXL(0.75L, 0.25L),
+ CMPLXL(pi / 4, -0.34657359027997265470861606072908828L),
+ CMPLXL(pi / 4, 0.34657359027997265470861606072908828L),
+ CMPLXL(0.66290883183401623252961960521423782L,
+ 0.15899719167999917436476103600701878L) },
+ };
+ int i;
+
+ for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
+ testall_tol(cacos, tests[i].z, tests[i].acos_z, 2);
+ testall_odd_tol(casin, tests[i].z, tests[i].asin_z, 2);
+ testall_odd_tol(catan, tests[i].z, tests[i].atan_z, 2);
+ }
+}
+
+/* Test inputs that might cause overflow in a sloppy implementation. */
+void
+test_large(void)
+{
+
+ /* TODO: Write these tests */
+}
+
+int
+main(int argc, char *argv[])
+{
+
+ printf("1..6\n");
+
+ test_zero();
+ printf("ok 1 - invctrig zero\n");
+
+ test_nan();
+ printf("ok 2 - invctrig nan\n");
*** DIFF OUTPUT TRUNCATED AT 1000 LINES ***
More information about the svn-src-stable-9
mailing list