svn commit: r235561 - stable/9/sys/dev/netmap

Luigi Rizzo luigi at FreeBSD.org
Thu May 17 20:04:25 UTC 2012


Author: luigi
Date: Thu May 17 20:04:24 2012
New Revision: 235561
URL: http://svn.freebsd.org/changeset/base/235561

Log:
  forgot two files in the previous commit...

Added:
  stable/9/sys/dev/netmap/netmap_mem1.c   (contents, props changed)
  stable/9/sys/dev/netmap/netmap_mem2.c   (contents, props changed)

Added: stable/9/sys/dev/netmap/netmap_mem1.c
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ stable/9/sys/dev/netmap/netmap_mem1.c	Thu May 17 20:04:24 2012	(r235561)
@@ -0,0 +1,521 @@
+/*
+ * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *   1. Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *   2. Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * $FreeBSD$
+ *
+ * The original netmap memory allocator, using a single large
+ * chunk of memory allocated with contigmalloc.
+ */
+
+/*
+ * Default amount of memory pre-allocated by the module.
+ * We start with a large size and then shrink our demand
+ * according to what is avalable when the module is loaded.
+ */
+#define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE)
+static void * netmap_malloc(size_t size, const char *msg);
+static void netmap_free(void *addr, const char *msg);
+
+#define netmap_if_malloc(len)   netmap_malloc(len, "nifp")
+#define netmap_if_free(v)	netmap_free((v), "nifp")
+
+#define netmap_ring_malloc(len) netmap_malloc(len, "ring")
+#define netmap_free_rings(na)		\
+	netmap_free((na)->tx_rings[0].ring, "shadow rings");
+
+/*
+ * Allocator for a pool of packet buffers. For each buffer we have
+ * one entry in the bitmap to signal the state. Allocation scans
+ * the bitmap, but since this is done only on attach, we are not
+ * too worried about performance
+ * XXX if we need to allocate small blocks, a translation
+ * table is used both for kernel virtual address and physical
+ * addresses.
+ */
+struct netmap_buf_pool {
+	u_int total_buffers;	/* total buffers. */
+	u_int free;
+	u_int bufsize;
+	char *base;		/* buffer base address */
+	uint32_t *bitmap;	/* one bit per buffer, 1 means free */
+};
+struct netmap_buf_pool nm_buf_pool;
+SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers,
+    CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers");
+SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers,
+    CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers");
+
+
+/*
+ * Allocate n buffers from the ring, and fill the slot.
+ * Buffer 0 is the 'junk' buffer.
+ */
+static void
+netmap_new_bufs(struct netmap_if *nifp __unused,
+		struct netmap_slot *slot, u_int n)
+{
+	struct netmap_buf_pool *p = &nm_buf_pool;
+	uint32_t bi = 0;		/* index in the bitmap */
+	uint32_t mask, j, i = 0;	/* slot counter */
+
+	if (n > p->free) {
+		D("only %d out of %d buffers available", i, n);
+		return;
+	}
+	/* termination is guaranteed by p->free */
+	while (i < n && p->free > 0) {
+		uint32_t cur = p->bitmap[bi];
+		if (cur == 0) { /* bitmask is fully used */
+			bi++;
+			continue;
+		}
+		/* locate a slot */
+		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ;
+		p->bitmap[bi] &= ~mask;		/* slot in use */
+		p->free--;
+		slot[i].buf_idx = bi*32+j;
+		slot[i].len = p->bufsize;
+		slot[i].flags = NS_BUF_CHANGED;
+		i++;
+	}
+	ND("allocated %d buffers, %d available", n, p->free);
+}
+
+
+static void
+netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i)
+{
+	struct netmap_buf_pool *p = &nm_buf_pool;
+
+	uint32_t pos, mask;
+	if (i >= p->total_buffers) {
+		D("invalid free index %d", i);
+		return;
+	}
+	pos = i / 32;
+	mask = 1 << (i % 32);
+	if (p->bitmap[pos] & mask) {
+		D("slot %d already free", i);
+		return;
+	}
+	p->bitmap[pos] |= mask;
+	p->free++;
+}
+
+
+/* Descriptor of the memory objects handled by our memory allocator. */
+struct netmap_mem_obj {
+	TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the
+						 chain. */
+	int nmo_used; /* flag set on used memory objects. */
+	size_t nmo_size; /* size of the memory area reserved for the
+			    object. */
+	void *nmo_data; /* pointer to the memory area. */
+};
+
+/* Wrap our memory objects to make them ``chainable``. */
+TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj);
+
+
+/* Descriptor of our custom memory allocator. */
+struct netmap_mem_d {
+	struct mtx nm_mtx; /* lock used to handle the chain of memory
+			      objects. */
+	struct netmap_mem_obj_h nm_molist; /* list of memory objects */
+	size_t nm_size; /* total amount of memory used for rings etc. */
+	size_t nm_totalsize; /* total amount of allocated memory
+		(the difference is used for buffers) */
+	size_t nm_buf_start; /* offset of packet buffers.
+			This is page-aligned. */
+	size_t nm_buf_len; /* total memory for buffers */
+	void *nm_buffer; /* pointer to the whole pre-allocated memory
+			    area. */
+};
+
+/* Shorthand to compute a netmap interface offset. */
+#define netmap_if_offset(v)                                     \
+    ((char *) (v) - (char *) nm_mem->nm_buffer)
+/* .. and get a physical address given a memory offset */
+#define netmap_ofstophys(o)                                     \
+    (vtophys(nm_mem->nm_buffer) + (o))
+
+
+/*------ netmap memory allocator -------*/
+/*
+ * Request for a chunk of memory.
+ *
+ * Memory objects are arranged into a list, hence we need to walk this
+ * list until we find an object with the needed amount of data free.
+ * This sounds like a completely inefficient implementation, but given
+ * the fact that data allocation is done once, we can handle it
+ * flawlessly.
+ *
+ * Return NULL on failure.
+ */
+static void *
+netmap_malloc(size_t size, __unused const char *msg)
+{
+	struct netmap_mem_obj *mem_obj, *new_mem_obj;
+	void *ret = NULL;
+
+	NMA_LOCK();
+	TAILQ_FOREACH(mem_obj, &nm_mem->nm_molist, nmo_next) {
+		if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size)
+			continue;
+
+		new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
+				     M_WAITOK | M_ZERO);
+		TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next);
+
+		new_mem_obj->nmo_used = 1;
+		new_mem_obj->nmo_size = size;
+		new_mem_obj->nmo_data = mem_obj->nmo_data;
+		memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size);
+
+		mem_obj->nmo_size -= size;
+		mem_obj->nmo_data = (char *) mem_obj->nmo_data + size;
+		if (mem_obj->nmo_size == 0) {
+			TAILQ_REMOVE(&nm_mem->nm_molist, mem_obj,
+				     nmo_next);
+			free(mem_obj, M_NETMAP);
+		}
+
+		ret = new_mem_obj->nmo_data;
+
+		break;
+	}
+	NMA_UNLOCK();
+	ND("%s: %d bytes at %p", msg, size, ret);
+
+	return (ret);
+}
+
+/*
+ * Return the memory to the allocator.
+ *
+ * While freeing a memory object, we try to merge adjacent chunks in
+ * order to reduce memory fragmentation.
+ */
+static void
+netmap_free(void *addr, const char *msg)
+{
+	size_t size;
+	struct netmap_mem_obj *cur, *prev, *next;
+
+	if (addr == NULL) {
+		D("NULL addr for %s", msg);
+		return;
+	}
+
+	NMA_LOCK();
+	TAILQ_FOREACH(cur, &nm_mem->nm_molist, nmo_next) {
+		if (cur->nmo_data == addr && cur->nmo_used)
+			break;
+	}
+	if (cur == NULL) {
+		NMA_UNLOCK();
+		D("invalid addr %s %p", msg, addr);
+		return;
+	}
+
+	size = cur->nmo_size;
+	cur->nmo_used = 0;
+
+	/* merge current chunk of memory with the previous one,
+	   if present. */
+	prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next);
+	if (prev && prev->nmo_used == 0) {
+		TAILQ_REMOVE(&nm_mem->nm_molist, cur, nmo_next);
+		prev->nmo_size += cur->nmo_size;
+		free(cur, M_NETMAP);
+		cur = prev;
+	}
+
+	/* merge with the next one */
+	next = TAILQ_NEXT(cur, nmo_next);
+	if (next && next->nmo_used == 0) {
+		TAILQ_REMOVE(&nm_mem->nm_molist, next, nmo_next);
+		cur->nmo_size += next->nmo_size;
+		free(next, M_NETMAP);
+	}
+	NMA_UNLOCK();
+	ND("freed %s %d bytes at %p", msg, size, addr);
+}
+
+
+/*
+ * Create and return a new ``netmap_if`` object, and possibly also
+ * rings and packet buffors.
+ *
+ * Return NULL on failure.
+ */
+static void *
+netmap_if_new(const char *ifname, struct netmap_adapter *na)
+{
+	struct netmap_if *nifp;
+	struct netmap_ring *ring;
+	struct netmap_kring *kring;
+	char *buff;
+	u_int i, len, ofs, numdesc;
+	u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack queue */
+	u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack queue */
+
+	/*
+	 * the descriptor is followed inline by an array of offsets
+	 * to the tx and rx rings in the shared memory region.
+	 */
+	len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
+	nifp = netmap_if_malloc(len);
+	if (nifp == NULL)
+		return (NULL);
+
+	/* initialize base fields */
+	*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
+	*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
+	strncpy(nifp->ni_name, ifname, IFNAMSIZ);
+
+	(na->refcount)++;	/* XXX atomic ? we are under lock */
+	if (na->refcount > 1)
+		goto final;
+
+	/*
+	 * First instance. Allocate the netmap rings
+	 * (one for each hw queue, one pair for the host).
+	 * The rings are contiguous, but have variable size.
+	 * The entire block is reachable at
+	 *	na->tx_rings[0]
+	 */
+	len = (ntx + nrx) * sizeof(struct netmap_ring) +
+	      (ntx * na->num_tx_desc + nrx * na->num_rx_desc) *
+		   sizeof(struct netmap_slot);
+	buff = netmap_ring_malloc(len);
+	if (buff == NULL) {
+		D("failed to allocate %d bytes for %s shadow ring",
+			len, ifname);
+error:
+		(na->refcount)--;
+		netmap_if_free(nifp);
+		return (NULL);
+	}
+	/* Check whether we have enough buffers */
+	len = ntx * na->num_tx_desc + nrx * na->num_rx_desc;
+	NMA_LOCK();
+	if (nm_buf_pool.free < len) {
+		NMA_UNLOCK();
+		netmap_free(buff, "not enough bufs");
+		goto error;
+	}
+	/*
+	 * in the kring, store the pointers to the shared rings
+	 * and initialize the rings. We are under NMA_LOCK().
+	 */
+	ofs = 0;
+	for (i = 0; i < ntx; i++) { /* Transmit rings */
+		kring = &na->tx_rings[i];
+		numdesc = na->num_tx_desc;
+		bzero(kring, sizeof(*kring));
+		kring->na = na;
+
+		ring = kring->ring = (struct netmap_ring *)(buff + ofs);
+		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
+			nm_buf_pool.base - (char *)ring;
+		ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs);
+		*(uint32_t *)(uintptr_t)&ring->num_slots =
+			kring->nkr_num_slots = numdesc;
+
+		/*
+		 * IMPORTANT:
+		 * Always keep one slot empty, so we can detect new
+		 * transmissions comparing cur and nr_hwcur (they are
+		 * the same only if there are no new transmissions).
+		 */
+		ring->avail = kring->nr_hwavail = numdesc - 1;
+		ring->cur = kring->nr_hwcur = 0;
+		*(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
+		netmap_new_bufs(nifp, ring->slot, numdesc);
+
+		ofs += sizeof(struct netmap_ring) +
+			numdesc * sizeof(struct netmap_slot);
+	}
+
+	for (i = 0; i < nrx; i++) { /* Receive rings */
+		kring = &na->rx_rings[i];
+		numdesc = na->num_rx_desc;
+		bzero(kring, sizeof(*kring));
+		kring->na = na;
+
+		ring = kring->ring = (struct netmap_ring *)(buff + ofs);
+		*(ssize_t *)(uintptr_t)&ring->buf_ofs =
+			nm_buf_pool.base - (char *)ring;
+		ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs);
+		*(uint32_t *)(uintptr_t)&ring->num_slots =
+			kring->nkr_num_slots = numdesc;
+		ring->cur = kring->nr_hwcur = 0;
+		ring->avail = kring->nr_hwavail = 0; /* empty */
+		*(uint16_t *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
+		netmap_new_bufs(nifp, ring->slot, numdesc);
+		ofs += sizeof(struct netmap_ring) +
+			numdesc * sizeof(struct netmap_slot);
+	}
+	NMA_UNLOCK();
+	// XXX initialize the selrecord structs.
+
+final:
+	/*
+	 * fill the slots for the rx and tx queues. They contain the offset
+	 * between the ring and nifp, so the information is usable in
+	 * userspace to reach the ring from the nifp.
+	 */
+	for (i = 0; i < ntx; i++) {
+		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
+			(char *)na->tx_rings[i].ring - (char *)nifp;
+	}
+	for (i = 0; i < nrx; i++) {
+		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
+			(char *)na->rx_rings[i].ring - (char *)nifp;
+	}
+	return (nifp);
+}
+
+/*
+ * Initialize the memory allocator.
+ *
+ * Create the descriptor for the memory , allocate the pool of memory
+ * and initialize the list of memory objects with a single chunk
+ * containing the whole pre-allocated memory marked as free.
+ *
+ * Start with a large size, then halve as needed if we fail to
+ * allocate the block. While halving, always add one extra page
+ * because buffers 0 and 1 are used for special purposes.
+ * Return 0 on success, errno otherwise.
+ */
+static int
+netmap_memory_init(void)
+{
+	struct netmap_mem_obj *mem_obj;
+	void *buf = NULL;
+	int i, n, sz = NETMAP_MEMORY_SIZE;
+	int extra_sz = 0; // space for rings and two spare buffers
+
+	for (; sz >= 1<<20; sz >>=1) {
+		extra_sz = sz/200;
+		extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
+	        buf = contigmalloc(sz + extra_sz,
+			     M_NETMAP,
+			     M_WAITOK | M_ZERO,
+			     0, /* low address */
+			     -1UL, /* high address */
+			     PAGE_SIZE, /* alignment */
+			     0 /* boundary */
+			    );
+		if (buf)
+			break;
+	}
+	if (buf == NULL)
+		return (ENOMEM);
+	sz += extra_sz;
+	nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
+			      M_WAITOK | M_ZERO);
+	mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
+		 MTX_DEF);
+	TAILQ_INIT(&nm_mem->nm_molist);
+	nm_mem->nm_buffer = buf;
+	nm_mem->nm_totalsize = sz;
+
+	/*
+	 * A buffer takes 2k, a slot takes 8 bytes + ring overhead,
+	 * so the ratio is 200:1. In other words, we can use 1/200 of
+	 * the memory for the rings, and the rest for the buffers,
+	 * and be sure we never run out.
+	 */
+	nm_mem->nm_size = sz/200;
+	nm_mem->nm_buf_start =
+		(nm_mem->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1);
+	nm_mem->nm_buf_len = sz - nm_mem->nm_buf_start;
+
+	nm_buf_pool.base = nm_mem->nm_buffer;
+	nm_buf_pool.base += nm_mem->nm_buf_start;
+	netmap_buffer_base = nm_buf_pool.base;
+	D("netmap_buffer_base %p (offset %d)",
+		netmap_buffer_base, (int)nm_mem->nm_buf_start);
+	/* number of buffers, they all start as free */
+
+	netmap_total_buffers = nm_buf_pool.total_buffers =
+		nm_mem->nm_buf_len / NETMAP_BUF_SIZE;
+	nm_buf_pool.bufsize = NETMAP_BUF_SIZE;
+
+	D("Have %d MB, use %dKB for rings, %d buffers at %p",
+		(sz >> 20), (int)(nm_mem->nm_size >> 10),
+		nm_buf_pool.total_buffers, nm_buf_pool.base);
+
+	/* allocate and initialize the bitmap. Entry 0 is considered
+	 * always busy (used as default when there are no buffers left).
+	 */
+	n = (nm_buf_pool.total_buffers + 31) / 32;
+	nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP,
+			 M_WAITOK | M_ZERO);
+	nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */
+	for (i = 1; i < n; i++)
+		nm_buf_pool.bitmap[i] = ~0;
+	nm_buf_pool.free = nm_buf_pool.total_buffers - 2;
+	
+	mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP,
+			 M_WAITOK | M_ZERO);
+	TAILQ_INSERT_HEAD(&nm_mem->nm_molist, mem_obj, nmo_next);
+	mem_obj->nmo_used = 0;
+	mem_obj->nmo_size = nm_mem->nm_size;
+	mem_obj->nmo_data = nm_mem->nm_buffer;
+
+	return (0);
+}
+
+
+/*
+ * Finalize the memory allocator.
+ *
+ * Free all the memory objects contained inside the list, and deallocate
+ * the pool of memory; finally free the memory allocator descriptor.
+ */
+static void
+netmap_memory_fini(void)
+{
+	struct netmap_mem_obj *mem_obj;
+
+	while (!TAILQ_EMPTY(&nm_mem->nm_molist)) {
+		mem_obj = TAILQ_FIRST(&nm_mem->nm_molist);
+		TAILQ_REMOVE(&nm_mem->nm_molist, mem_obj, nmo_next);
+		if (mem_obj->nmo_used == 1) {
+			printf("netmap: leaked %d bytes at %p\n",
+			       (int)mem_obj->nmo_size,
+			       mem_obj->nmo_data);
+		}
+		free(mem_obj, M_NETMAP);
+	}
+	contigfree(nm_mem->nm_buffer, nm_mem->nm_totalsize, M_NETMAP);
+	// XXX mutex_destroy(nm_mtx);
+	free(nm_mem, M_NETMAP);
+}
+/*------------- end of memory allocator -----------------*/

Added: stable/9/sys/dev/netmap/netmap_mem2.c
==============================================================================
--- /dev/null	00:00:00 1970	(empty, because file is newly added)
+++ stable/9/sys/dev/netmap/netmap_mem2.c	Thu May 17 20:04:24 2012	(r235561)
@@ -0,0 +1,720 @@
+/*
+ * Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *   1. Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *   2. Redistributions in binary form must reproduce the above copyright
+ *      notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+/*
+ * $FreeBSD$
+ * $Id: netmap_mem2.c 10830 2012-03-22 18:06:01Z luigi $
+ *
+ * New memory allocator for netmap
+ */
+
+/*
+ * The new version allocates three regions:
+ *	nm_if_pool      for the struct netmap_if
+ *	nm_ring_pool    for the struct netmap_ring
+ *	nm_buf_pool    for the packet buffers.
+ *
+ * All regions need to be page-sized as we export them to
+ * userspace through mmap. Only the latter need to be dma-able,
+ * but for convenience use the same type of allocator for all.
+ *
+ * Once mapped, the three regions are exported to userspace
+ * as a contiguous block, starting from nm_if_pool. Each
+ * cluster (and pool) is an integral number of pages.
+ *   [ . . . ][ . . . . . .][ . . . . . . . . . .]
+ *    nm_if     nm_ring            nm_buf
+ *
+ * The userspace areas contain offsets of the objects in userspace.
+ * When (at init time) we write these offsets, we find out the index
+ * of the object, and from there locate the offset from the beginning
+ * of the region.
+ *
+ * Allocator for a pool of memory objects of the same size.
+ * The pool is split into smaller clusters, whose size is a
+ * multiple of the page size. The cluster size is chosen
+ * to minimize the waste for a given max cluster size
+ * (we do it by brute force, as we have relatively few object
+ * per cluster).
+ *
+ * To be polite with the cache, objects are aligned to
+ * the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
+ * For each object we have
+ * one entry in the bitmap to signal the state. Allocation scans
+ * the bitmap, but since this is done only on attach, we are not
+ * too worried about performance
+ */
+
+/*
+ *	MEMORY SIZES:
+ *
+ * (all the parameters below will become tunables)
+ *
+ * struct netmap_if is variable size but small.
+ * Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
+ * uses 120 bytes on a 64-bit machine.
+ * We allocate NETMAP_IF_MAX_SIZE  (1024) which should work even for
+ * cards with 48 ring pairs.
+ * The total number of 'struct netmap_if' could be slightly larger
+ * that the total number of rings on all interfaces on the system.
+ */
+#define NETMAP_IF_MAX_SIZE      1024
+#define NETMAP_IF_MAX_NUM       512
+
+/*
+ * netmap rings are up to 2..4k descriptors, 8 bytes each,
+ * plus some glue at the beginning (32 bytes).
+ * We set the default ring size to 9 pages (36K) and enable
+ * a few hundreds of them.
+ */
+#define NETMAP_RING_MAX_SIZE    (9*PAGE_SIZE)
+#define NETMAP_RING_MAX_NUM     200	/* approx 8MB */
+
+/*
+ * Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
+ * 2k or slightly less, aligned to 64 bytes.
+ * A large 10G interface can have 2k*18 = 36k buffers per interface,
+ * or about 72MB of memory. Up to us to use more.
+ */
+#ifndef CONSERVATIVE
+#define NETMAP_BUF_MAX_NUM      100000  /* 200MB */
+#else /* CONSERVATIVE */
+#define NETMAP_BUF_MAX_NUM      20000   /* 40MB */
+#endif
+
+
+struct netmap_obj_pool {
+	char name[16];		/* name of the allocator */
+	u_int objtotal;         /* actual total number of objects. */
+	u_int objfree;          /* number of free objects. */
+	u_int clustentries;	/* actual objects per cluster */
+
+	/* the total memory space is _numclusters*_clustsize */
+	u_int _numclusters;	/* how many clusters */
+	u_int _clustsize;        /* cluster size */
+	u_int _objsize;		/* actual object size */
+
+	u_int _memtotal;	/* _numclusters*_clustsize */
+	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
+	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
+};
+
+struct netmap_mem_d {
+	NM_LOCK_T nm_mtx; /* protect the allocator ? */
+	u_int nm_totalsize; /* shorthand */
+
+	/* pointers to the three allocators */
+	struct netmap_obj_pool *nm_if_pool;
+	struct netmap_obj_pool *nm_ring_pool;
+	struct netmap_obj_pool *nm_buf_pool;
+};
+
+struct lut_entry *netmap_buffer_lut;	/* exported */
+
+
+/*
+ * Convert a userspace offset to a phisical address.
+ * XXX re-do in a simpler way.
+ *
+ * The idea here is to hide userspace applications the fact that pre-allocated
+ * memory is not contiguous, but fragmented across different clusters and
+ * smaller memory allocators. Consequently, first of all we need to find which
+ * allocator is owning provided offset, then we need to find out the physical
+ * address associated to target page (this is done using the look-up table.
+ */
+static inline vm_paddr_t
+netmap_ofstophys(vm_offset_t offset)
+{
+	const struct netmap_obj_pool *p[] = {
+		nm_mem->nm_if_pool,
+		nm_mem->nm_ring_pool,
+		nm_mem->nm_buf_pool };
+	int i;
+	vm_offset_t o = offset;
+
+
+	for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
+		if (offset >= p[i]->_memtotal)
+			continue;
+		// XXX now scan the clusters
+		return p[i]->lut[offset / p[i]->_objsize].paddr +
+			offset % p[i]->_objsize;
+	}
+	D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
+		p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
+		p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
+	return 0;	// XXX bad address
+}
+
+/*
+ * we store objects by kernel address, need to find the offset
+ * within the pool to export the value to userspace.
+ * Algorithm: scan until we find the cluster, then add the
+ * actual offset in the cluster
+ */
+static ssize_t
+netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
+{
+	int i, k = p->clustentries, n = p->objtotal;
+	ssize_t ofs = 0;
+
+	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
+		const char *base = p->lut[i].vaddr;
+		ssize_t relofs = (const char *) vaddr - base;
+
+		if (relofs < 0 || relofs > p->_clustsize)
+			continue;
+
+		ofs = ofs + relofs;
+		ND("%s: return offset %d (cluster %d) for pointer %p",
+		    p->name, ofs, i, vaddr);
+		return ofs;
+	}
+	D("address %p is not contained inside any cluster (%s)",
+	    vaddr, p->name);
+	return 0; /* An error occurred */
+}
+
+/* Helper functions which convert virtual addresses to offsets */
+#define netmap_if_offset(v)					\
+	netmap_obj_offset(nm_mem->nm_if_pool, (v))
+
+#define netmap_ring_offset(v)					\
+    (nm_mem->nm_if_pool->_memtotal + 				\
+	netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
+
+#define netmap_buf_offset(v)					\
+    (nm_mem->nm_if_pool->_memtotal +				\
+	nm_mem->nm_ring_pool->_memtotal +			\
+	netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
+
+
+static void *
+netmap_obj_malloc(struct netmap_obj_pool *p, int len)
+{
+	uint32_t i = 0;			/* index in the bitmap */
+	uint32_t mask, j;		/* slot counter */
+	void *vaddr = NULL;
+
+	if (len > p->_objsize) {
+		D("%s request size %d too large", p->name, len);
+		// XXX cannot reduce the size
+		return NULL;
+	}
+
+	if (p->objfree == 0) {
+		D("%s allocator: run out of memory", p->name);
+		return NULL;
+	}
+
+	/* termination is guaranteed by p->free */
+	while (vaddr == NULL) {
+		uint32_t cur = p->bitmap[i];
+		if (cur == 0) { /* bitmask is fully used */
+			i++;
+			continue;
+		}
+		/* locate a slot */
+		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
+			;
+
+		p->bitmap[i] &= ~mask; /* mark object as in use */
+		p->objfree--;
+
+		vaddr = p->lut[i * 32 + j].vaddr;
+	}
+	ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
+
+	return vaddr;
+}
+
+
+/*
+ * free by index, not by address
+ */
+static void
+netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
+{
+	if (j >= p->objtotal) {
+		D("invalid index %u, max %u", j, p->objtotal);
+		return;
+	}
+	p->bitmap[j / 32] |= (1 << (j % 32));
+	p->objfree++;
+	return;
+}
+
+static void
+netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
+{
+	int i, j, n = p->_memtotal / p->_clustsize;
+
+	for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
+		void *base = p->lut[i * p->clustentries].vaddr;
+		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
+
+		/* Given address, is out of the scope of the current cluster.*/
+		if (vaddr < base || relofs > p->_clustsize)
+			continue;
+
+		j = j + relofs / p->_objsize;
+		KASSERT(j != 0, ("Cannot free object 0"));
+		netmap_obj_free(p, j);
+		return;
+	}
+	ND("address %p is not contained inside any cluster (%s)",
+	    vaddr, p->name);
+}
+
+#define netmap_if_malloc(len)	netmap_obj_malloc(nm_mem->nm_if_pool, len)
+#define netmap_if_free(v)	netmap_obj_free_va(nm_mem->nm_if_pool, (v))
+#define netmap_ring_malloc(len)	netmap_obj_malloc(nm_mem->nm_ring_pool, len)
+#define netmap_buf_malloc()			\
+	netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
+
+
+/* Return the index associated to the given packet buffer */
+#define netmap_buf_index(v)						\
+    (netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
+
+
+static void
+netmap_new_bufs(struct netmap_if *nifp __unused,
+                struct netmap_slot *slot, u_int n)
+{
+	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
+	uint32_t i = 0;	/* slot counter */
+
+	for (i = 0; i < n; i++) {
+		void *vaddr = netmap_buf_malloc();
+		if (vaddr == NULL) {
+			D("unable to locate empty packet buffer");
+			goto cleanup;
+		}
+
+		slot[i].buf_idx = netmap_buf_index(vaddr);
+		KASSERT(slot[i].buf_idx != 0,
+		    ("Assigning buf_idx=0 to just created slot"));
+		slot[i].len = p->_objsize;
+		slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
+	}
+
+	ND("allocated %d buffers, %d available", n, p->objfree);
+	return;
+
+cleanup:
+	for (i--; i >= 0; i--) {
+		netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
+	}
+}
+
+
+static void
+netmap_free_buf(struct netmap_if *nifp, uint32_t i)
+{
+	struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
+	if (i < 2 || i >= p->objtotal) {
+		D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
+		return;
+	}
+	netmap_obj_free(nm_mem->nm_buf_pool, i);
+}
+
+
+/*
+ * Free all resources related to an allocator.
+ */
+static void
+netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
+{
+	if (p == NULL)
+		return;
+	if (p->bitmap)
+		free(p->bitmap, M_NETMAP);
+	if (p->lut) {
+		int i;
+		for (i = 0; i < p->objtotal; i += p->clustentries) {
+			if (p->lut[i].vaddr)
+				contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
+		}
+		bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
+		free(p->lut, M_NETMAP);
+	}
+	bzero(p, sizeof(*p));
+	free(p, M_NETMAP);
+}
+
+/*
+ * We receive a request for objtotal objects, of size objsize each.
+ * Internally we may round up both numbers, as we allocate objects
+ * in small clusters multiple of the page size.
+ * In the allocator we don't need to store the objsize,
+ * but we do need to keep track of objtotal' and clustentries,
+ * as they are needed when freeing memory.
+ *
+ * XXX note -- userspace needs the buffers to be contiguous,
+ *	so we cannot afford gaps at the end of a cluster.
+ */
+static struct netmap_obj_pool *
+netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
+{
+	struct netmap_obj_pool *p;
+	int i, n;
+	u_int clustsize;	/* the cluster size, multiple of page size */
+	u_int clustentries;	/* how many objects per entry */
+
+#define MAX_CLUSTSIZE	(1<<17)
+#define LINE_ROUND	64
+	if (objsize >= MAX_CLUSTSIZE) {
+		/* we could do it but there is no point */
+		D("unsupported allocation for %d bytes", objsize);
+		return NULL;
+	}
+	/* make sure objsize is a multiple of LINE_ROUND */
+	i = (objsize & (LINE_ROUND - 1));
+	if (i) {
+		D("XXX aligning object by %d bytes", LINE_ROUND - i);
+		objsize += LINE_ROUND - i;
+	}
+	/*
+	 * Compute number of objects using a brute-force approach:
+	 * given a max cluster size,
+	 * we try to fill it with objects keeping track of the
+	 * wasted space to the next page boundary.
+	 */
+	for (clustentries = 0, i = 1;; i++) {
+		u_int delta, used = i * objsize;
+		if (used > MAX_CLUSTSIZE)
+			break;
+		delta = used % PAGE_SIZE;
+		if (delta == 0) { // exact solution
+			clustentries = i;
+			break;
+		}
+		if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
+			clustentries = i;
+	}
+	// D("XXX --- ouch, delta %d (bad for buffers)", delta);
+	/* compute clustsize and round to the next page */
+	clustsize = clustentries * objsize;
+	i =  (clustsize & (PAGE_SIZE - 1));
+	if (i)
+		clustsize += PAGE_SIZE - i;
+	D("objsize %d clustsize %d objects %d",
+		objsize, clustsize, clustentries);
+
+	p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
+	    M_WAITOK | M_ZERO);
+	if (p == NULL) {
+		D("Unable to create '%s' allocator", name);
+		return NULL;
+	}
+	/*
+	 * Allocate and initialize the lookup table.
+	 *
+	 * The number of clusters is n = ceil(objtotal/clustentries)
+	 * objtotal' = n * clustentries
+	 */
+	strncpy(p->name, name, sizeof(p->name));
+	p->clustentries = clustentries;
+	p->_clustsize = clustsize;
+	n = (objtotal + clustentries - 1) / clustentries;
+	p->_numclusters = n;
+	p->objtotal = n * clustentries;
+	p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
+	p->_objsize = objsize;
+	p->_memtotal = p->_numclusters * p->_clustsize;
+
+	p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
+	    M_NETMAP, M_WAITOK | M_ZERO);
+	if (p->lut == NULL) {
+		D("Unable to create lookup table for '%s' allocator", name);
+		goto clean;
+	}
+
+	/* Allocate the bitmap */
+	n = (p->objtotal + 31) / 32;
+	p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
+	if (p->bitmap == NULL) {
+		D("Unable to create bitmap (%d entries) for allocator '%s'", n,
+		    name);
+		goto clean;
+	}
+
+	/*
+	 * Allocate clusters, init pointers and bitmap
+	 */
+	for (i = 0; i < p->objtotal;) {
+		int lim = i + clustentries;
+		char *clust;
+
+		clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
+		    0, -1UL, PAGE_SIZE, 0);

*** DIFF OUTPUT TRUNCATED AT 1000 LINES ***


More information about the svn-src-stable-9 mailing list