cvs commit: src/lib/msun/src e_rem_pio2f.c
Bruce Evans
bde at FreeBSD.org
Sat Oct 8 15:43:56 PDT 2005
bde 2005-10-08 22:43:55 UTC
FreeBSD src repository
Modified files:
lib/msun/src e_rem_pio2f.c
Log:
Fixed range reduction near (but not very near) +-pi/2. A bug caused
a maximum error of 2.905 ulps for cosf(), but the algorithm for cosf()
is good for < 1 ulps and happens to give perfect rounding (< 0.5 ulps)
near +-pi/2 except for the bug. The extra relative errors for tanf()
were similar (slightly larger). The bug didn't affect sinf() since
sinf'(+-pi/2) is 0.
For range reduction in ~[-3pi/4, -pi/4] and ~[pi/4, 3pi/4] we must
subtract +-pi/2 and the only complication is that this must be done
in extra precision. We have handy 17+24-bit and 17+17+24-bit
approximations to pi/2. If we always used the former then we would
lose up to 24 bits of accuracy due to cancelation of leading bits, but
we need to keep at least 24 bits plus a guard digit or 2, and should
keep as many guard bits as efficiency permits. So we used the
less-precise pi/2 not very near +-pi/2 and switched to using the
more-precise pi/2 very near +-pi/2. However, we got the threshold for
the switch wrong by allowing 19 bits to cancel, so we ended up with
only 21 or 22 bits of accuracy in some cases, which is even worse than
naively subtracting pi/2 would have done.
Exhaustive checking shows that allowing only 17 bits to cancel (min.
accuracy ~24 bits) is sufficient to reduce the maximum error for cosf()
near +-pi/2 to 0.726 ulps, but allowing only 6 bits to cancel (min.
accuracy ~35-bits) happens to give perfect rounding for cosf() at
little extra cost so we prefer that.
We actually (in effect) allow 0 bits to cancel and always use the
17+17+24-bit pi/2 (min. accuracy ~41 bits). This is simpler and
probably always more efficient too. Classifying args to avoid using
this pi/2 when it is not needed takes several extra integer operations
and a branch, but just using it takes only 1 FP operation.
The patch also fixes misspelling of 17 as 24 in many comments.
For the double-precision version, the magic numbers include 33+53 bits
for the less-precise pi/2 and (53-32-1 = 20) bits being allowed to
cancel, so there are ~33-20 = 13 guard bits. This is sufficient except
probably for perfect rounding. The more-precise pi/2 has 33+33+53
bits and we still waste time classifying args to avoid using it.
The bug is apparently from mistranslation of the magic 32 in 53-32-1.
The number of bits allowed to cancel is not critical and we use 32 for
double precision because it allows efficient classification using a
32-bit comparison. For float precision, we must use an explicit mask,
and there are fewer bits so there is less margin for error in their
allocation. The 32 got reduced to 4 but should have been reduced
almost in proportion to the reduction of mantissa bits.
Revision Changes Path
1.8 +7 -19 src/lib/msun/src/e_rem_pio2f.c
More information about the cvs-src
mailing list