git: e7ad0b44e51e - main - math/py-deap: Fix build with setuptools 58.0.0+
- Go to: [ bottom of page ] [ top of archives ] [ this month ]
Date: Mon, 07 Mar 2022 18:27:20 UTC
The branch main has been updated by sunpoet: URL: https://cgit.FreeBSD.org/ports/commit/?id=e7ad0b44e51efdcae16d9b90944d00e763c77770 commit e7ad0b44e51efdcae16d9b90944d00e763c77770 Author: Po-Chuan Hsieh <sunpoet@FreeBSD.org> AuthorDate: 2022-03-07 18:07:34 +0000 Commit: Po-Chuan Hsieh <sunpoet@FreeBSD.org> CommitDate: 2022-03-07 18:13:20 +0000 math/py-deap: Fix build with setuptools 58.0.0+ With hat: python --- math/py-deap/files/patch-2to3 | 1148 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1148 insertions(+) diff --git a/math/py-deap/files/patch-2to3 b/math/py-deap/files/patch-2to3 new file mode 100644 index 000000000000..fe8e7b516557 --- /dev/null +++ b/math/py-deap/files/patch-2to3 @@ -0,0 +1,1148 @@ +--- deap/algorithms.py.orig 2020-01-21 01:17:45 UTC ++++ deap/algorithms.py +@@ -27,7 +27,7 @@ you really want them to do. + + import random + +-import tools ++from . import tools + + + def varAnd(population, toolbox, cxpb, mutpb): +@@ -157,7 +157,7 @@ def eaSimple(population, toolbox, cxpb, mutpb, ngen, s + record = stats.compile(population) if stats else {} + logbook.record(gen=0, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + # Begin the generational process + for gen in range(1, ngen + 1): +@@ -184,7 +184,7 @@ def eaSimple(population, toolbox, cxpb, mutpb, ngen, s + record = stats.compile(population) if stats else {} + logbook.record(gen=gen, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + return population, logbook + +@@ -227,10 +227,10 @@ def varOr(population, toolbox, lambda_, cxpb, mutpb): + "or equal to 1.0.") + + offspring = [] +- for _ in xrange(lambda_): ++ for _ in range(lambda_): + op_choice = random.random() + if op_choice < cxpb: # Apply crossover +- ind1, ind2 = map(toolbox.clone, random.sample(population, 2)) ++ ind1, ind2 = list(map(toolbox.clone, random.sample(population, 2))) + ind1, ind2 = toolbox.mate(ind1, ind2) + del ind1.fitness.values + offspring.append(ind1) +@@ -308,7 +308,7 @@ def eaMuPlusLambda(population, toolbox, mu, lambda_, c + record = stats.compile(population) if stats is not None else {} + logbook.record(gen=0, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + # Begin the generational process + for gen in range(1, ngen + 1): +@@ -332,7 +332,7 @@ def eaMuPlusLambda(population, toolbox, mu, lambda_, c + record = stats.compile(population) if stats is not None else {} + logbook.record(gen=gen, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + return population, logbook + +@@ -409,7 +409,7 @@ def eaMuCommaLambda(population, toolbox, mu, lambda_, + record = stats.compile(population) if stats is not None else {} + logbook.record(gen=0, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + # Begin the generational process + for gen in range(1, ngen + 1): +@@ -433,7 +433,7 @@ def eaMuCommaLambda(population, toolbox, mu, lambda_, + record = stats.compile(population) if stats is not None else {} + logbook.record(gen=gen, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + return population, logbook + + +@@ -477,7 +477,7 @@ def eaGenerateUpdate(toolbox, ngen, halloffame=None, s + logbook = tools.Logbook() + logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) + +- for gen in xrange(ngen): ++ for gen in range(ngen): + # Generate a new population + population = toolbox.generate() + # Evaluate the individuals +@@ -494,6 +494,6 @@ def eaGenerateUpdate(toolbox, ngen, halloffame=None, s + record = stats.compile(population) if stats is not None else {} + logbook.record(gen=gen, nevals=len(population), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + return population, logbook +--- deap/base.py.orig 2020-01-21 01:17:45 UTC ++++ deap/base.py +@@ -189,12 +189,12 @@ class Fitness(object): + self.wvalues = tuple(map(mul, values, self.weights)) + except TypeError: + _, _, traceback = sys.exc_info() +- raise TypeError, ("Both weights and assigned values must be a " ++ raise TypeError("Both weights and assigned values must be a " + "sequence of numbers when assigning to values of " + "%r. Currently assigning value(s) %r of %r to a " + "fitness with weights %s." + % (self.__class__, values, type(values), +- self.weights)), traceback ++ self.weights)).with_traceback(traceback) + + def delValues(self): + self.wvalues = () +--- deap/benchmarks/__init__.py.orig 2020-01-21 01:17:45 UTC ++++ deap/benchmarks/__init__.py +@@ -489,7 +489,7 @@ def dtlz1(individual, obj): + """ + g = 100 * (len(individual[obj-1:]) + sum((xi-0.5)**2 - cos(20*pi*(xi-0.5)) for xi in individual[obj-1:])) + f = [0.5 * reduce(mul, individual[:obj-1], 1) * (1 + g)] +- f.extend(0.5 * reduce(mul, individual[:m], 1) * (1 - individual[m]) * (1 + g) for m in reversed(xrange(obj-1))) ++ f.extend(0.5 * reduce(mul, individual[:m], 1) * (1 - individual[m]) * (1 + g) for m in reversed(range(obj-1))) + return f + + def dtlz2(individual, obj): +@@ -588,7 +588,7 @@ def dtlz5(ind, n_objs): + theta = lambda x: pi / (4.0 * (1 + gval)) * (1 + 2 * gval * x) + fit = [(1 + gval) * cos(pi / 2.0 * ind[0]) * reduce(lambda x,y: x*y, [cos(theta(a)) for a in ind[1:]])] + +- for m in reversed(range(1, n_objs)): ++ for m in reversed(list(range(1, n_objs))): + if m == 1: + fit.append((1 + gval) * sin(pi / 2.0 * ind[0])) + else: +@@ -608,7 +608,7 @@ def dtlz6(ind, n_objs): + fit = [(1 + gval) * cos(pi / 2.0 * ind[0]) * + reduce(lambda x,y: x*y, [cos(theta(a)) for a in ind[1:]])] + +- for m in reversed(range(1, n_objs)): ++ for m in reversed(list(range(1, n_objs))): + if m == 1: + fit.append((1 + gval) * sin(pi / 2.0 * ind[0])) + else: +--- deap/benchmarks/binary.py.orig 2020-01-21 01:17:45 UTC ++++ deap/benchmarks/binary.py +@@ -13,7 +13,7 @@ + # You should have received a copy of the GNU Lesser General Public + # License along with DEAP. If not, see <http://www.gnu.org/licenses/>. + +-from __future__ import division ++ + from functools import wraps + import math + +@@ -29,7 +29,7 @@ def bin2float(min_, max_, nbits): + # User must take care to make nelem an integer. + nelem = len(individual)//nbits + decoded = [0] * nelem +- for i in xrange(nelem): ++ for i in range(nelem): + gene = int("".join(map(str, + individual[i*nbits:i*nbits+nbits])), + 2) +@@ -68,10 +68,10 @@ def chuang_f1(individual): + """ + total = 0 + if individual[-1] == 0: +- for i in xrange(0, len(individual)-1, 4): ++ for i in range(0, len(individual)-1, 4): + total += inv_trap(individual[i:i+4]) + else: +- for i in xrange(0, len(individual)-1, 4): ++ for i in range(0, len(individual)-1, 4): + total += trap(individual[i:i+4]) + return total, + +@@ -85,16 +85,16 @@ def chuang_f2(individual): + """ + total = 0 + if individual[-2] == 0 and individual[-1] == 0: +- for i in xrange(0, len(individual)-2, 8): ++ for i in range(0, len(individual)-2, 8): + total += inv_trap(individual[i:i+4]) + inv_trap(individual[i+4:i+8]) + elif individual[-2] == 0 and individual[-1] == 1: +- for i in xrange(0, len(individual)-2, 8): ++ for i in range(0, len(individual)-2, 8): + total += inv_trap(individual[i:i+4]) + trap(individual[i+4:i+8]) + elif individual[-2] == 1 and individual[-1] == 0: +- for i in xrange(0, len(individual)-2, 8): ++ for i in range(0, len(individual)-2, 8): + total += trap(individual[i:i+4]) + inv_trap(individual[i+4:i+8]) + else: +- for i in xrange(0, len(individual)-2, 8): ++ for i in range(0, len(individual)-2, 8): + total += trap(individual[i:i+4]) + trap(individual[i+4:i+8]) + return total, + +@@ -108,10 +108,10 @@ def chuang_f3(individual): + """ + total = 0 + if individual[-1] == 0: +- for i in xrange(0, len(individual)-1, 4): ++ for i in range(0, len(individual)-1, 4): + total += inv_trap(individual[i:i+4]) + else: +- for i in xrange(2, len(individual)-3, 4): ++ for i in range(2, len(individual)-3, 4): + total += inv_trap(individual[i:i+4]) + total += trap(individual[-2:]+individual[:2]) + return total, +@@ -125,7 +125,7 @@ def royal_road1(individual, order): + nelem = len(individual) // order + max_value = int(2**order - 1) + total = 0 +- for i in xrange(nelem): ++ for i in range(nelem): + value = int("".join(map(str, individual[i*order:i*order+order])), 2) + total += int(order) * int(value/max_value) + return total, +--- deap/benchmarks/movingpeaks.py.orig 2020-01-21 01:17:45 UTC ++++ deap/benchmarks/movingpeaks.py +@@ -393,6 +393,6 @@ def diversity(population): + + if __name__ == "__main__": + mpb = MovingPeaks(dim=2, npeaks=[1,1,10], number_severity=0.1) +- print mpb.maximums() ++ print(mpb.maximums()) + mpb.changePeaks() +- print mpb.maximums() ++ print(mpb.maximums()) +--- deap/benchmarks/tools.py.orig 2020-01-21 01:17:45 UTC ++++ deap/benchmarks/tools.py +@@ -285,7 +285,7 @@ def convergence(first_front, optimal_front): + distances.append(float("inf")) + for opt_ind in optimal_front: + dist = 0. +- for i in xrange(len(opt_ind)): ++ for i in range(len(opt_ind)): + dist += (ind.fitness.values[i] - opt_ind[i])**2 + if dist < distances[-1]: + distances[-1] = dist +--- deap/cma.py.orig 2020-01-21 01:17:45 UTC ++++ deap/cma.py +@@ -24,7 +24,7 @@ import copy + from math import sqrt, log, exp + import numpy + +-import tools ++from . import tools + + + class Strategy(object): +@@ -118,7 +118,7 @@ class Strategy(object): + """ + arz = numpy.random.standard_normal((self.lambda_, self.dim)) + arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T) +- return map(ind_init, arz) ++ return list(map(ind_init, arz)) + + def update(self, population): + """Update the current covariance matrix strategy from the +@@ -286,7 +286,7 @@ class StrategyOnePlusLambda(object): + # self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim)) + arz = numpy.random.standard_normal((self.lambda_, self.dim)) + arz = self.parent + self.sigma * numpy.dot(arz, self.A.T) +- return map(ind_init, arz) ++ return list(map(ind_init, arz)) + + def update(self, population): + """Update the current covariance matrix strategy from the +--- deap/creator.py.orig 2020-01-21 01:17:45 UTC ++++ deap/creator.py +@@ -142,7 +142,7 @@ def create(name, base, **kargs): + + dict_inst = {} + dict_cls = {} +- for obj_name, obj in kargs.iteritems(): ++ for obj_name, obj in kargs.items(): + if isinstance(obj, type): + dict_inst[obj_name] = obj + else: +@@ -161,7 +161,7 @@ def create(name, base, **kargs): + """Replace the __init__ function of the new type, in order to + add attributes that were defined with **kargs to the instance. + """ +- for obj_name, obj in dict_inst.iteritems(): ++ for obj_name, obj in dict_inst.items(): + setattr(self, obj_name, obj()) + if base.__init__ is not object.__init__: + base.__init__(self, *args, **kargs) +--- deap/gp.py.orig 2020-01-21 01:17:45 UTC ++++ deap/gp.py +@@ -31,7 +31,7 @@ from functools import partial, wraps + from inspect import isclass + from operator import eq, lt + +-import tools # Needed by HARM-GP ++from . import tools # Needed by HARM-GP + + ###################################### + # GP Data structure # +@@ -197,7 +197,7 @@ class Primitive(object): + self.arity = len(args) + self.args = args + self.ret = ret +- args = ", ".join(map("{{{0}}}".format, range(self.arity))) ++ args = ", ".join(map("{{{0}}}".format, list(range(self.arity)))) + self.seq = "{name}({args})".format(name=self.name, args=args) + + def format(self, *args): +@@ -298,7 +298,7 @@ class PrimitiveSetTyped(object): + def addType(dict_, ret_type): + if ret_type not in dict_: + new_list = [] +- for type_, list_ in dict_.items(): ++ for type_, list_ in list(dict_.items()): + if issubclass(type_, ret_type): + for item in list_: + if item not in new_list: +@@ -478,11 +478,11 @@ def compile(expr, pset): + return eval(code, pset.context, {}) + except MemoryError: + _, _, traceback = sys.exc_info() +- raise MemoryError, ("DEAP : Error in tree evaluation :" ++ raise MemoryError("DEAP : Error in tree evaluation :" + " Python cannot evaluate a tree higher than 90. " + "To avoid this problem, you should use bloat control on your " + "operators. See the DEAP documentation for more information. " +- "DEAP will now abort."), traceback ++ "DEAP will now abort.").with_traceback(traceback) + + + def compileADF(expr, psets): +@@ -504,7 +504,7 @@ def compileADF(expr, psets): + """ + adfdict = {} + func = None +- for pset, subexpr in reversed(zip(psets, expr)): ++ for pset, subexpr in reversed(list(zip(psets, expr))): + pset.context.update(adfdict) + func = compile(subexpr, pset) + adfdict.update({pset.name: func}) +@@ -613,9 +613,9 @@ def generate(pset, min_, max_, condition, type_=None): + term = random.choice(pset.terminals[type_]) + except IndexError: + _, _, traceback = sys.exc_info() +- raise IndexError, "The gp.generate function tried to add " \ ++ raise IndexError("The gp.generate function tried to add " \ + "a terminal of type '%s', but there is " \ +- "none available." % (type_,), traceback ++ "none available." % (type_,)).with_traceback(traceback) + if isclass(term): + term = term() + expr.append(term) +@@ -624,9 +624,9 @@ def generate(pset, min_, max_, condition, type_=None): + prim = random.choice(pset.primitives[type_]) + except IndexError: + _, _, traceback = sys.exc_info() +- raise IndexError, "The gp.generate function tried to add " \ ++ raise IndexError("The gp.generate function tried to add " \ + "a primitive of type '%s', but there is " \ +- "none available." % (type_,), traceback ++ "none available." % (type_,)).with_traceback(traceback) + expr.append(prim) + for arg in reversed(prim.args): + stack.append((depth + 1, arg)) +@@ -654,8 +654,8 @@ def cxOnePoint(ind1, ind2): + types2 = defaultdict(list) + if ind1.root.ret == __type__: + # Not STGP optimization +- types1[__type__] = xrange(1, len(ind1)) +- types2[__type__] = xrange(1, len(ind2)) ++ types1[__type__] = range(1, len(ind1)) ++ types2[__type__] = range(1, len(ind2)) + common_types = [__type__] + else: + for idx, node in enumerate(ind1[1:], 1): +@@ -1009,8 +1009,8 @@ def harm(population, toolbox, cxpb, mutpb, ngen, + opRandom = random.random() + if opRandom < cxpb: + # Crossover +- aspirant1, aspirant2 = toolbox.mate(*map(toolbox.clone, +- toolbox.select(population, 2))) ++ aspirant1, aspirant2 = toolbox.mate(*list(map(toolbox.clone, ++ toolbox.select(population, 2)))) + del aspirant1.fitness.values, aspirant2.fitness.values + if acceptfunc(len(aspirant1)): + producedpop.append(aspirant1) +@@ -1058,7 +1058,7 @@ def harm(population, toolbox, cxpb, mutpb, ngen, + record = stats.compile(population) if stats else {} + logbook.record(gen=0, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + # Begin the generational process + for gen in range(1, ngen + 1): +@@ -1125,7 +1125,7 @@ def harm(population, toolbox, cxpb, mutpb, ngen, + record = stats.compile(population) if stats else {} + logbook.record(gen=gen, nevals=len(invalid_ind), **record) + if verbose: +- print logbook.stream ++ print(logbook.stream) + + return population, logbook + +@@ -1186,7 +1186,7 @@ def graph(expr): + <http://networkx.lanl.gov/pygraphviz/>`_ as the nodes might be plotted + out of order when using `NetworX <http://networkx.github.com/>`_. + """ +- nodes = range(len(expr)) ++ nodes = list(range(len(expr))) + edges = list() + labels = dict() + +--- deap/tests/test_benchmarks.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tests/test_benchmarks.py +@@ -34,7 +34,7 @@ class BenchmarkTest(unittest.TestCase): + full_individual = creator.Individual([1] * 10) + two_individiual = creator.Individual(8*[0] + [1, 0]) + population = [zero_individual, full_individual, two_individiual] +- fitnesses = map(self.toolbox.evaluate, population) ++ fitnesses = list(map(self.toolbox.evaluate, population)) + for ind, fit in zip(population, fitnesses): + ind.fitness.values = fit + assert population[0].fitness.values == (0.0, ) +@@ -46,7 +46,7 @@ class BenchmarkTest(unittest.TestCase): + wrong_population = [wrong_size_individual] + # It is up the user to make sure that bin2float gets an individual with + # an adequate length; no exceptions are raised. +- fitnesses = map(self.toolbox.evaluate, wrong_population) ++ fitnesses = list(map(self.toolbox.evaluate, wrong_population)) + for ind, fit in zip(wrong_population, fitnesses): + # In python 2.7 operator.mul works in a different way than in + # python3. Thus an error occurs in python2.7 but an assignment is +--- deap/tests/test_init.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tests/test_init.py +@@ -8,6 +8,6 @@ from deap import tools + class LogbookTest(unittest.TestCase): + def test_statistics_compile(self): + l = 10 +- gen_idx = partial(random.sample, range(l), l) ++ gen_idx = partial(random.sample, list(range(l)), l) + i = tools.initIterate(list, gen_idx) + self.assertSetEqual(set(i), set(range(l))) +--- deap/tests/test_logbook.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tests/test_logbook.py +@@ -7,7 +7,7 @@ class LogbookTest(unittest.TestCase): + + def setUp(self): + self.logbook = tools.Logbook() +- print ++ print() + + def test_multi_chapters(self): + self.logbook.record(gen=0, evals=100, fitness={'obj 1' : {'avg' : 1.0, 'max' : 10}, +@@ -18,23 +18,23 @@ class LogbookTest(unittest.TestCase): + 'obj 2' : {'avg' : 1.0, 'max' : 10}}, + length={'avg' : 1.0, 'max' : 30}, + test={'avg' : 1.0, 'max' : 20}) +- print(self.logbook.stream) ++ print((self.logbook.stream)) + + + def test_one_chapter(self): + self.logbook.record(gen=0, evals=100, fitness={'avg' : 1.0, 'max' : 10}) + self.logbook.record(gen=0, evals=100, fitness={'avg' : 1.0, 'max' : 10}) +- print(self.logbook.stream) ++ print((self.logbook.stream)) + + def test_one_big_chapter(self): + self.logbook.record(gen=0, evals=100, fitness={'obj 1' : {'avg' : 1.0, 'max' : 10}, 'obj 2' : {'avg' : 1.0, 'max' : 10}}) + self.logbook.record(gen=0, evals=100, fitness={'obj 1' : {'avg' : 1.0, 'max' : 10}, 'obj 2' : {'avg' : 1.0, 'max' : 10}}) +- print(self.logbook.stream) ++ print((self.logbook.stream)) + + def test_no_chapters(self): + self.logbook.record(gen=0, evals=100, **{'avg' : 1.0, 'max' : 10}) + self.logbook.record(gen=0, evals=100, **{'avg' : 1.0, 'max' : 10}) +- print(self.logbook.stream) ++ print((self.logbook.stream)) + + + +--- deap/tools/_hypervolume/pyhv.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/_hypervolume/pyhv.py +@@ -64,7 +64,7 @@ class _HyperVolume: + """ + + def weaklyDominates(point, other): +- for i in xrange(len(point)): ++ for i in range(len(point)): + if point[i] > other[i]: + return False + return True +@@ -152,7 +152,7 @@ class _HyperVolume: + hvol = qPrevDimIndex.volume[dimIndex] + qPrevDimIndex.area[dimIndex] * (qCargo[dimIndex] - qPrevDimIndex.cargo[dimIndex]) + else: + qArea[0] = 1 +- qArea[1:dimIndex+1] = [qArea[i] * -qCargo[i] for i in xrange(dimIndex)] ++ qArea[1:dimIndex+1] = [qArea[i] * -qCargo[i] for i in range(dimIndex)] + q.volume[dimIndex] = hvol + if q.ignore >= dimIndex: + qArea[dimIndex] = qPrevDimIndex.area[dimIndex] +@@ -184,7 +184,7 @@ class _HyperVolume: + dimensions = len(self.referencePoint) + nodeList = _MultiList(dimensions) + nodes = [_MultiList.Node(dimensions, point) for point in front] +- for i in xrange(dimensions): ++ for i in range(dimensions): + self.sortByDimension(nodes, i) + nodeList.extend(nodes, i) + self.list = nodeList +@@ -239,7 +239,7 @@ class _MultiList: + + def __str__(self): + strings = [] +- for i in xrange(self.numberLists): ++ for i in range(self.numberLists): + currentList = [] + node = self.sentinel.next[i] + while node != self.sentinel: +@@ -292,7 +292,7 @@ class _MultiList: + + def remove(self, node, index, bounds): + """Removes and returns 'node' from all lists in [0, 'index'[.""" +- for i in xrange(index): ++ for i in range(index): + predecessor = node.prev[i] + successor = node.next[i] + predecessor.next[i] = successor +@@ -309,7 +309,7 @@ class _MultiList: + nodes of the node that is reinserted are in the list. + + """ +- for i in xrange(index): ++ for i in range(index): + node.prev[i].next[i] = node + node.next[i].prev[i] = node + if bounds[i] > node.cargo[i]: +@@ -329,8 +329,8 @@ if __name__ == "__main__": + pointset = [(a, a) for a in numpy.arange(1, 0, -0.01)] + ref = numpy.array([2, 2]) + +- print("Python version: %f" % hypervolume(pointset, ref)) ++ print(("Python version: %f" % hypervolume(pointset, ref))) + if hv: +- print("C version: %f" % hv.hypervolume(pointset, ref)) +- print("Approximated: %f" % hypervolume_approximation(pointset, ref)) ++ print(("C version: %f" % hv.hypervolume(pointset, ref))) ++ print(("Approximated: %f" % hypervolume_approximation(pointset, ref))) + +--- deap/tools/constraint.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/constraint.py +@@ -172,6 +172,6 @@ if __name__ == "__main__": + toolbox.decorate("evaluate", ClosestValidPenalty(valid, closest_feasible, 1.0e-6, distance)) + + ind1 = creator.Individual((-5.6468535666e-01,2.2483050478e+00,-1.1087909644e+00,-1.2710112861e-01,1.1682438733e+00,-1.3642007438e+00,-2.1916417835e-01,-5.9137308999e-01,-1.0870160336e+00,6.0515070232e-01,2.1532075914e+00,-2.6164718271e-01,1.5244071578e+00,-1.0324305612e+00,1.2858152343e+00,-1.2584683962e+00,1.2054392372e+00,-1.7429571973e+00,-1.3517256013e-01,-2.6493429355e+00,-1.3051320798e-01,2.2641961090e+00,-2.5027232340e+00,-1.2844874148e+00,1.9955852925e+00,-1.2942218834e+00,3.1340109155e+00,1.6440111097e+00,-1.7750105857e+00,7.7610242710e-01)) +- print(toolbox.evaluate(ind1)) +- print("Individuals is valid: %s" % ("True" if valid(ind1) else "False")) ++ print((toolbox.evaluate(ind1))) ++ print(("Individuals is valid: %s" % ("True" if valid(ind1) else "False"))) + +--- deap/tools/crossover.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/crossover.py +@@ -1,4 +1,4 @@ +-from __future__ import division ++ + import random + import warnings + +@@ -84,7 +84,7 @@ def cxUniform(ind1, ind2, indpb): + :mod:`random` module. + """ + size = min(len(ind1), len(ind2)) +- for i in xrange(size): ++ for i in range(size): + if random.random() < indpb: + ind1[i], ind2[i] = ind2[i], ind1[i] + +@@ -115,7 +115,7 @@ def cxPartialyMatched(ind1, ind2): + p1, p2 = [0] * size, [0] * size + + # Initialize the position of each indices in the individuals +- for i in xrange(size): ++ for i in range(size): + p1[ind1[i]] = i + p2[ind2[i]] = i + # Choose crossover points +@@ -127,7 +127,7 @@ def cxPartialyMatched(ind1, ind2): + cxpoint1, cxpoint2 = cxpoint2, cxpoint1 + + # Apply crossover between cx points +- for i in xrange(cxpoint1, cxpoint2): ++ for i in range(cxpoint1, cxpoint2): + # Keep track of the selected values + temp1 = ind1[i] + temp2 = ind2[i] +@@ -166,11 +166,11 @@ def cxUniformPartialyMatched(ind1, ind2, indpb): + p1, p2 = [0] * size, [0] * size + + # Initialize the position of each indices in the individuals +- for i in xrange(size): ++ for i in range(size): + p1[ind1[i]] = i + p2[ind2[i]] = i + +- for i in xrange(size): ++ for i in range(size): + if random.random() < indpb: + # Keep track of the selected values + temp1 = ind1[i] +@@ -209,7 +209,7 @@ def cxOrdered(ind1, ind2): + optimization and machine learning. Addison Wesley, 1989 + """ + size = min(len(ind1), len(ind2)) +- a, b = random.sample(xrange(size), 2) ++ a, b = random.sample(range(size), 2) + if a > b: + a, b = b, a + +@@ -321,7 +321,7 @@ def cxSimulatedBinaryBounded(ind1, ind2, eta, low, up) + elif len(up) < size: + raise IndexError("up must be at least the size of the shorter individual: %d < %d" % (len(up), size)) + +- for i, xl, xu in zip(xrange(size), low, up): ++ for i, xl, xu in zip(range(size), low, up): + if random.random() <= 0.5: + # This epsilon should probably be changed for 0 since + # floating point arithmetic in Python is safer +--- deap/tools/emo.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/emo.py +@@ -1,4 +1,4 @@ +-from __future__ import division ++ + import bisect + from collections import defaultdict, namedtuple + from itertools import chain +@@ -74,7 +74,7 @@ def sortNondominated(individuals, k, first_front_only= + map_fit_ind = defaultdict(list) + for ind in individuals: + map_fit_ind[ind.fitness].append(ind) +- fits = map_fit_ind.keys() ++ fits = list(map_fit_ind.keys()) + + current_front = [] + next_front = [] +@@ -129,7 +129,7 @@ def assignCrowdingDist(individuals): + + nobj = len(individuals[0].fitness.values) + +- for i in xrange(nobj): ++ for i in range(nobj): + crowd.sort(key=lambda element: element[0][i]) + distances[crowd[0][1]] = float("inf") + distances[crowd[-1][1]] = float("inf") +@@ -184,7 +184,7 @@ def selTournamentDCD(individuals, k): + individuals_2 = random.sample(individuals, len(individuals)) + + chosen = [] +- for i in xrange(0, k, 4): ++ for i in range(0, k, 4): + chosen.append(tourn(individuals_1[i], individuals_1[i+1])) + chosen.append(tourn(individuals_1[i+2], individuals_1[i+3])) + chosen.append(tourn(individuals_2[i], individuals_2[i+1])) +@@ -248,7 +248,7 @@ def sortLogNondominated(individuals, k, first_front_on + + #Launch the sorting algorithm + obj = len(individuals[0].fitness.wvalues)-1 +- fitnesses = unique_fits.keys() ++ fitnesses = list(unique_fits.keys()) + front = dict.fromkeys(fitnesses, 0) + + # Sort the fitnesses lexicographically. +@@ -284,7 +284,7 @@ def sortNDHelperA(fitnesses, obj, front): + front[s2] = max(front[s2], front[s1] + 1) + elif obj == 1: + sweepA(fitnesses, front) +- elif len(frozenset(map(itemgetter(obj), fitnesses))) == 1: ++ elif len(frozenset(list(map(itemgetter(obj), fitnesses)))) == 1: + #All individuals for objective M are equal: go to objective M-1 + sortNDHelperA(fitnesses, obj-1, front) + else: +@@ -615,7 +615,7 @@ def associate_to_niche(fitnesses, reference_points, be + + # Retrieve min distance niche index + niches = numpy.argmin(distances, axis=1) +- distances = distances[range(niches.shape[0]), niches] ++ distances = distances[list(range(niches.shape[0])), niches] + return niches, distances + + +@@ -705,7 +705,7 @@ def selSPEA2(individuals, k): + K = math.sqrt(N) + strength_fits = [0] * N + fits = [0] * N +- dominating_inds = [list() for i in xrange(N)] ++ dominating_inds = [list() for i in range(N)] + + for i, ind_i in enumerate(individuals): + for j, ind_j in enumerate(individuals[i+1:], i+1): +@@ -716,19 +716,19 @@ def selSPEA2(individuals, k): + strength_fits[j] += 1 + dominating_inds[i].append(j) + +- for i in xrange(N): ++ for i in range(N): + for j in dominating_inds[i]: + fits[i] += strength_fits[j] + + # Choose all non-dominated individuals +- chosen_indices = [i for i in xrange(N) if fits[i] < 1] ++ chosen_indices = [i for i in range(N) if fits[i] < 1] + + if len(chosen_indices) < k: # The archive is too small +- for i in xrange(N): ++ for i in range(N): + distances = [0.0] * N +- for j in xrange(i + 1, N): ++ for j in range(i + 1, N): + dist = 0.0 +- for l in xrange(L): ++ for l in range(L): + val = individuals[i].fitness.values[l] - \ + individuals[j].fitness.values[l] + dist += val * val +@@ -737,7 +737,7 @@ def selSPEA2(individuals, k): + density = 1.0 / (kth_dist + 2.0) + fits[i] += density + +- next_indices = [(fits[i], i) for i in xrange(N) ++ next_indices = [(fits[i], i) for i in range(N) + if not i in chosen_indices] + next_indices.sort() + #print next_indices +@@ -745,12 +745,12 @@ def selSPEA2(individuals, k): + + elif len(chosen_indices) > k: # The archive is too large + N = len(chosen_indices) +- distances = [[0.0] * N for i in xrange(N)] +- sorted_indices = [[0] * N for i in xrange(N)] +- for i in xrange(N): +- for j in xrange(i + 1, N): ++ distances = [[0.0] * N for i in range(N)] ++ sorted_indices = [[0] * N for i in range(N)] ++ for i in range(N): ++ for j in range(i + 1, N): + dist = 0.0 +- for l in xrange(L): ++ for l in range(L): + val = individuals[chosen_indices[i]].fitness.values[l] - \ + individuals[chosen_indices[j]].fitness.values[l] + dist += val * val +@@ -759,8 +759,8 @@ def selSPEA2(individuals, k): + distances[i][i] = -1 + + # Insert sort is faster than quick sort for short arrays +- for i in xrange(N): +- for j in xrange(1, N): ++ for i in range(N): ++ for j in range(1, N): + l = j + while l > 0 and distances[i][j] < distances[i][sorted_indices[i][l - 1]]: + sorted_indices[i][l] = sorted_indices[i][l - 1] +@@ -772,8 +772,8 @@ def selSPEA2(individuals, k): + while size > k: + # Search for minimal distance + min_pos = 0 +- for i in xrange(1, N): +- for j in xrange(1, size): ++ for i in range(1, N): ++ for j in range(1, size): + dist_i_sorted_j = distances[i][sorted_indices[i][j]] + dist_min_sorted_j = distances[min_pos][sorted_indices[min_pos][j]] + +@@ -784,11 +784,11 @@ def selSPEA2(individuals, k): + break + + # Remove minimal distance from sorted_indices +- for i in xrange(N): ++ for i in range(N): + distances[i][min_pos] = float("inf") + distances[min_pos][i] = float("inf") + +- for j in xrange(1, size - 1): ++ for j in range(1, size - 1): + if sorted_indices[i][j] == min_pos: + sorted_indices[i][j] = sorted_indices[i][j + 1] + sorted_indices[i][j + 1] = min_pos +--- deap/tools/indicator.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/indicator.py +@@ -41,7 +41,7 @@ def hypervolume(front, **kargs): + return hv.hypervolume(numpy.concatenate((wobj[:i], wobj[i+1:])), ref) + + # Parallelization note: Cannot pickle local function +- contrib_values = map(contribution, range(len(front))) ++ contrib_values = list(map(contribution, list(range(len(front))))) + + # Select the maximum hypervolume value (correspond to the minimum difference) + return numpy.argmax(contrib_values) +@@ -62,7 +62,7 @@ def additive_epsilon(front, **kargs): + mwobj[i] = numpy.ma.masked + return numpy.min(numpy.max(wobj[i] - mwobj, axis=1)) + +- contrib_values = map(contribution, range(len(front))) ++ contrib_values = list(map(contribution, list(range(len(front))))) + + # Select the minimum contribution value + return numpy.argmin(contrib_values) +@@ -84,7 +84,7 @@ def multiplicative_epsilon(front, **kargs): + mwobj[i] = numpy.ma.masked + return numpy.min(numpy.max(wobj[i] / mwobj, axis=1)) + +- contrib_values = map(contribution, range(len(front))) ++ contrib_values = list(map(contribution, list(range(len(front))))) + + # Select the minimum contribution value + return numpy.argmin(contrib_values) +--- deap/tools/init.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/init.py +@@ -1,5 +1,5 @@ +-from __future__ import division + ++ + def initRepeat(container, func, n): + """Call the function *container* with a generator function corresponding + to the calling *n* times the function *func*. +@@ -22,7 +22,7 @@ def initRepeat(container, func, n): + + See the :ref:`list-of-floats` and :ref:`population` tutorials for more examples. + """ +- return container(func() for _ in xrange(n)) ++ return container(func() for _ in range(n)) + + def initIterate(container, generator): + """Call the function *container* with an iterable as +@@ -72,7 +72,7 @@ def initCycle(container, seq_func, n=1): + + See the :ref:`funky` tutorial for an example. + """ +- return container(func() for _ in xrange(n) for func in seq_func) ++ return container(func() for _ in range(n) for func in seq_func) + + __all__ = ['initRepeat', 'initIterate', 'initCycle'] + +--- deap/tools/migration.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/migration.py +@@ -1,6 +1,6 @@ +-from __future__ import division + + ++ + def migRing(populations, k, selection, replacement=None, migarray=None): + """Perform a ring migration between the *populations*. The migration first + select *k* emigrants from each population using the specified *selection* +@@ -31,12 +31,12 @@ def migRing(populations, k, selection, replacement=Non + """ + nbr_demes = len(populations) + if migarray is None: +- migarray = range(1, nbr_demes) + [0] ++ migarray = list(range(1, nbr_demes)) + [0] + +- immigrants = [[] for i in xrange(nbr_demes)] +- emigrants = [[] for i in xrange(nbr_demes)] ++ immigrants = [[] for i in range(nbr_demes)] ++ emigrants = [[] for i in range(nbr_demes)] + +- for from_deme in xrange(nbr_demes): ++ for from_deme in range(nbr_demes): + emigrants[from_deme].extend(selection(populations[from_deme], k)) + if replacement is None: + # If no replacement strategy is selected, replace those who migrate +--- deap/tools/mutation.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/mutation.py +@@ -1,4 +1,4 @@ +-from __future__ import division ++ + import math + import random + +@@ -41,7 +41,7 @@ def mutGaussian(individual, mu, sigma, indpb): + elif len(sigma) < size: + raise IndexError("sigma must be at least the size of individual: %d < %d" % (len(sigma), size)) + +- for i, m, s in zip(xrange(size), mu, sigma): ++ for i, m, s in zip(range(size), mu, sigma): + if random.random() < indpb: + individual[i] += random.gauss(m, s) + +@@ -72,7 +72,7 @@ def mutPolynomialBounded(individual, eta, low, up, ind + elif len(up) < size: + raise IndexError("up must be at least the size of individual: %d < %d" % (len(up), size)) + +- for i, xl, xu in zip(xrange(size), low, up): ++ for i, xl, xu in zip(range(size), low, up): + if random.random() <= indpb: + x = individual[i] + delta_1 = (x - xl) / (xu - xl) +@@ -110,7 +110,7 @@ def mutShuffleIndexes(individual, indpb): + functions from the python base :mod:`random` module. + """ + size = len(individual) +- for i in xrange(size): ++ for i in range(size): + if random.random() < indpb: + swap_indx = random.randint(0, size - 2) + if swap_indx >= i: +@@ -135,7 +135,7 @@ def mutFlipBit(individual, indpb): + This function uses the :func:`~random.random` function from the python base + :mod:`random` module. + """ +- for i in xrange(len(individual)): ++ for i in range(len(individual)): + if random.random() < indpb: + individual[i] = type(individual[i])(not individual[i]) + +@@ -166,7 +166,7 @@ def mutUniformInt(individual, low, up, indpb): + elif len(up) < size: + raise IndexError("up must be at least the size of individual: %d < %d" % (len(up), size)) + +- for i, xl, xu in zip(xrange(size), low, up): ++ for i, xl, xu in zip(range(size), low, up): + if random.random() < indpb: + individual[i] = random.randint(xl, xu) + +@@ -207,7 +207,7 @@ def mutESLogNormal(individual, c, indpb): + n = random.gauss(0, 1) + t0_n = t0 * n + +- for indx in xrange(size): ++ for indx in range(size): + if random.random() < indpb: + individual.strategy[indx] *= math.exp(t0_n + t * random.gauss(0, 1)) + individual[indx] += individual.strategy[indx] * random.gauss(0, 1) +--- deap/tools/selection.py.orig 2020-01-21 01:17:45 UTC ++++ deap/tools/selection.py +@@ -1,4 +1,4 @@ +-from __future__ import division ++ + import random + import numpy as np + +@@ -21,7 +21,7 @@ def selRandom(individuals, k): + This function uses the :func:`~random.choice` function from the + python base :mod:`random` module. + """ +- return [random.choice(individuals) for i in xrange(k)] ++ return [random.choice(individuals) for i in range(k)] + + + def selBest(individuals, k, fit_attr="fitness"): +@@ -63,7 +63,7 @@ def selTournament(individuals, k, tournsize, fit_attr= + :mod:`random` module. + """ + chosen = [] +- for i in xrange(k): ++ for i in range(k): + aspirants = selRandom(individuals, tournsize) + chosen.append(max(aspirants, key=attrgetter(fit_attr))) + return chosen +@@ -90,7 +90,7 @@ def selRoulette(individuals, k, fit_attr="fitness"): + s_inds = sorted(individuals, key=attrgetter(fit_attr), reverse=True) + sum_fits = sum(getattr(ind, fit_attr).values[0] for ind in individuals) + chosen = [] +- for i in xrange(k): ++ for i in range(k): *** 184 LINES SKIPPED ***